Menu

Blog

Page 624

Sep 16, 2024

Inspired by squids and octopi, a new screen stores and displays encrypted images without electronics

Posted by in categories: chemistry, computing, encryption, engineering

A flexible screen inspired in part by squid can store and display encrypted images like a computer—using magnetic fields rather than electronics. The research is reported in Advanced Materials by University of Michigan engineers.

“It’s one of the first times where mechanical materials use magnetic fields for system-level encryption, information processing and computing. And unlike some earlier mechanical computers, this device can wrap around your wrist,” said Joerg Lahann, the Wolfgang Pauli Collegiate Professor of Chemical Engineering and co-corresponding author of the study.

Continue reading “Inspired by squids and octopi, a new screen stores and displays encrypted images without electronics” »

Sep 16, 2024

Novel framework allows for automated tuning of large-scale neuronal models

Posted by in categories: neuroscience, robotics/AI

Developing large-scale neural network models that mimic the brain’s activity is a major goal in the field of computational neuroscience. Existing models that accurately reproduce aspects of brain activity are notoriously complex, and fine-tuning model parameters often requires significant time, intuition, and expertise.

New published research from an interdisciplinary group of researchers primarily based at Carnegie Mellon University and the University of Pittsburgh presents a novel solution to mitigate some of these challenges. The machine learning-driven framework, Spiking Network Optimization using Population Statistics (SNOPS), can quickly and accurately customize models that reproduce activity to mimic what’s observed in the .

Continue reading “Novel framework allows for automated tuning of large-scale neuronal models” »

Sep 16, 2024

Optogenetic control reveals collective cell behavior

Posted by in categories: bioengineering, genetics

New research led by the Institute for Bioengineering of Catalonia (IBEC) has studied the migratory movement of groups of cells using light control. The results show that there is no leader cell that directs the collective movement, as previously thought, but that all cells participate in the process.

Sep 16, 2024

Research team uses terahertz pulses of light to shed light on superconducting disorder

Posted by in category: materials

A team of researchers from the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg, Germany, and Brookhaven National Laboratory in the United States has demonstrated a new way to study disorder in superconductors using terahertz pulses of light.

Sep 16, 2024

AI enhances plasma plume analysis

Posted by in category: robotics/AI

In a published in the journal npj Computational Materials, Oak Ridge National Laboratory scientists developed a deep learning model—a type of artificial intelligence that mimics human brain function—to analyze high-speed videos of plasma plumes during a process called pulsed laser deposition, or PLD.

Sep 16, 2024

Deep design produces ‘butterfly’ phase mask for light-sheet fluorescence microscopy

Posted by in category: robotics/AI

Researchers have introduced a solution to the problem of light-sheet fluorescence microscopy: novel illumination beams designed based on deep learning using a trainable phase mask. Their study eliminates the need for sophisticated optical design tools, allowing optimization to be directly applied to improve image contrast.

Sep 16, 2024

New strategy for simulating nonadiabatic dynamics of molecules at metal surfaces

Posted by in category: futurism

A research team has proposed a novel approach to accurately describe electron transfer mediated nonadiabatic dynamics of molecules at metal surfaces. Their works were published in Physical Review Letters.

Sep 16, 2024

IQM Quantum Computers Reaches Production Milestone of 30 Quantum Computers

Posted by in categories: quantum physics, supercomputing

PRESS RELEASE — IQM Quantum Computers (IQM), a global leader in designing, building, and selling superconducting quantum computers, today announced that it has reached a milestone of producing 30 full-stack quantum computers in its manufacturing facility in Finland.

In addition, IQM has also completed the delivery and installation of six full-stack quantum computers to customers worldwide. IQM’s previously announced customers include VTT Technical Research Centre of Finland, Leibniz Supercomputing Centre (LRZ) in Germany as well as Forschungszentrum Jülich in Germany.

With increasing demand for on-premises quantum computers globally, IQM Quantum Computers Co-CEO Mikko Välimäki highlighted the significance of the manufacturing milestone, stating: “One of the key bottlenecks in quantum computer adoption has been prohibitively high prices. We are the first quantum computer manufacturer with the goal of taking quantum computers to a much wider market with industrialized manufacturing capabilities that help drive the prices lower. Looking ahead, our production line has the capacity to deliver up to 20 full-stack quantum computers a year.”

Sep 16, 2024

Is the Big Bang Theory Losing Ground? New Evidence Emerges

Posted by in category: cosmology

Explore the latest challenges to the Big Bang theory and discover how new observations are reshaping our understanding of the universe’s origins.

Sep 16, 2024

Controlling molecular arrangements using selenium doping

Posted by in categories: nanotechnology, physics

Physicists from the National University of Singapore (NUS) have achieved controlled conformational arrangements in nanostructures using a flexible precursor and selenium doping, enhancing material properties and structural homogeneity. Their method advances on-surface synthesis for the design and development of engineered nanomaterials.

On-surface synthesis has been extensively investigated over the past decades for its ability to create diverse nanostructures. Various complex nanostructures have been achieved through the smart design of precursors, choice of substrates and precise control of experimental parameters such as molecular concentration, electrical stimulation and thermal treatment.

Among these methods, the Ullmann coupling is notable for efficiently linking precursors through dehalogenation and covalent bonding. While most research has focused on conformationally rigid precursors, exploring conformationally flexible precursors offers significant potential for developing complex functional nanomaterials with engineered structures and properties.

Page 624 of 12,353First621622623624625626627628Last