Toggle light / dark theme

It is quickly becoming a hot topic among machine learning experts and those concerned with AI safety.

One of us (Anders) has a background in computational neuroscience, and now works with groups such as the AI Objectives Institute, where we discuss how to avoid such problems with AI; the other (Thomas) studies history, and the various ways people have thought about both the future and the fate of civilization throughout the past. After striking up a conversation on the topic of wireheading, we both realized just how rich and interesting the history behind this topic is.

It is an idea that is very of the moment, but its roots go surprisingly deep. We are currently working together to research just how deep the roots go: a story that we hope to tell fully in a forthcoming book. The topic connects everything from the riddle of personal motivation, to the pitfalls of increasingly addictive social media, to the conundrum of hedonism and whether a life of stupefied bliss may be preferable to one of meaningful hardship. It may well influence the future of civilization itself.

Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production.

Typically, scientists have been using , such as platinum, to accelerate the reaction to break water into hydrogen and oxygen. Now Curtin research has found that adding nickel and cobalt to cheaper, previously ineffective catalysts enhances their performance, which lowers the required to split the water and increases the yield of hydrogen.

Lead researcher Dr. Guohua Jia, from Curtin’s School of Molecular and Life Sciences, said this discovery could have far-reaching implications for sustainable green fuel generation in the future.

A provocative and controversial Documentary about solutions for Humanity and Global Warming.


A film following Danish scientist Bjorn Lomborg who offers a fresh perspective on global warming based on human needs as well as environmental concerns.

Magnets, typically using rare earth metals like neodymium, are found at the heart of most electric vehicle motors. It’s nice to have a permanent source of powerful rare earth magnetism in your rotor, because using powered coils instead means you have to somehow transfer electricity from the battery through to the coils in a spinning rotor. That means you’ll need a sliding point of contact, and sliding points of contact develop wear and tear over time.

Permanent magnets, though, come with their own baggage. Ninety seven percent of the world’s rare earth metal supply comes out of China, and state control over such a crucial resource across a number of high-tech industries has been a serious issue in the past. Official accounts differ about why China decided to restrict rare earth exports back at the start of the decade, as official accounts tend to do, but the result either way was a 750-percent leap in neodymium prices and a 2,000-percent leap in dysprosium prices.

Could these metals be produced elsewhere? Yes. They’re not as rare as the name might suggest. But wherever they’re mined, the only way to economically turn them into magnets is to send them to China for processing – nowhere else in the world is set up for the task, and nobody can compete against China’s minimal labor costs and environmental regulations.

Cancer cell death is triggered within three days when X-rays are shone onto tumor tissue containing iodine-carrying nanoparticles. The iodine releases electrons that break the tumor’s DNA, leading to cell death. The findings, by scientists at Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) and colleagues in Japan and the US, were published in the journal Scientific Reports.

“Exposing a metal to light leads to the release of electrons, a phenomenon called the photoelectric effect. An explanation of this phenomenon by Albert Einstein in 1905 heralded the birth of quantum physics,” says iCeMS molecular biologist Fuyuhiko Tamanoi, who led the study. “Our research provides evidence that suggests it is possible to reproduce this effect inside cancer cells.”

A long-standing problem with cancer radiation therapy is that it is not effective at the center of tumors where oxygen levels are low due to the lack of blood vessels penetrating deeply into the tissue. X-ray irradiation needs oxygen to generate DNA-damaging reactive oxygen when the rays hit molecules inside the cell.

This is for all who like coffee:

“To our knowledge, this is the largest study to systematically assess the cardiovascular effects of regular coffee consumption in a population without diagnosed heart disease,” said study author Dr. Judit Simon, of the Heart and Vascular Centre, Semmelweis University, Budapest, Hungary.

Our results suggest that regular coffee consumption is safe, as even high daily intake was not associated with adverse cardiovascular outcomes and all-cause… See More.


Your access to the latest cardiovascular news, science, tools and resources.

The researchers, from the University of Science and Technology of China, hope that the technique – which uses liquid metal to mimic natural muscle movements — could also help to administer drugs inside the body and underwater drones.


Researchers created an artificial muscle using liquid metal that allows it to expand and contract and hope one day to use the technology to help humans.

Researchers at Japan Advanced Institute of Science and Technology and University of Tokyo recently developed AugLimb, a compact robotic limb that could support humans as they complete a variety of tasks. This new limb, presented in a paper pre-published on arXiv, can extend up to 250 mm and grasp different objects in a user’s vicinity.

“We are interested in human augmentation technologies, which aim to enhance human capabilities with information and robotics approaches,” Haoran Xie, one of the researchers who carried out the study, told Tech Xplore. “We particularly focus on the physical augmentation of human bodies.”

Most existing wearable robotic arms are designed to be mounted on a human user’s upper body (e.g., on the upper arm, waist or shoulders). While some of these systems have achieved promising results, they are typically based on bulky hardware and wearing them can be uncomfortable for users.

The U.N. human rights chief is calling for a moratorium on the use of artificial intelligence technology that poses a serious risk to human rights, including face-scanning systems that track people in public spaces.

Michelle Bachelet, the U.N. High Commissioner for Human Rights, also said Wednesday that countries should expressly ban AI applications which don’t comply with international human rights law.

Applications that should be prohibited include government “social scoring” systems that judge people based on their behavior and certain AI-based tools that categorize people into clusters such as by ethnicity or gender.