TSMC’s board has approved its new $7 billion fab in Japan, which the company will partner with Sony on. The fab will focus on older 22nm and 28nm chips, with production set to begin in 2024.
UC Berkeley physicist Norman Yao first described five years ago how to make a time crystal—a new form of matter whose patterns repeat in time instead of space. Unlike crystals of emerald or ruby, however, those time crystals existed for only a fraction of a second.
But the time has arrived for time crystals. Since Yao’s original proposal, new insights have led to the discovery that time crystals come in many different forms, each stabilized by its own distinct mechanism.
Using new quantum computing architectures, several labs have come close to creating a many-body localized version of a time crystal, which uses disorder to keep periodically-driven quantum qubits in a continual state of subharmonic jiggling—the qubits oscillate, but only every other period of the drive.
You.com, an AI-powered search engine cofounded by former Salesforce chief scientist Richard Socher, is launching in beta.
In a study published in Nucleic Acids Research, the team of cancer researcher Francis Rodier, an Université de Montréal professor, shows for the first time that cellular senescence, which occurs when aging cells stop dividing, is caused by irreversible damage to the genome rather than simply by telomere erosion.
This discovery goes against the scientific model most widely adopted in the last 15 years, which is based on one principle: telomeres, caps located at the ends of chromosomes whose purpose is to protect genetic information, erode with each cell division. When they get too short, they tell the cell to stop dividing, thus preventing damage to its DNA. Made dormant, the cell enters senescence.
For this model to be valid, the inactivation of a single telomere should be sufficient to activate the senescence program. Rodier’s laboratory and many others had already observed that several dysfunctional telomeres were necessary.
Signup for your FREE trial to Wondrium here: http://ow.ly/NwIS30rNQ5m — Be sure to check out Sean Carroll’s series called, “Mysteries of modern physics: Time” — I highly recommend it!
A good definition of information in physics: “information contained in a physical system = the number of yes/no questions you need to get answered to fully specify the system.”
References:
Lee Smolin’s paper: https://arxiv.org/abs/2104.09945
Prior video on entropy: https://youtu.be/T6CxT4AESCQ
Wave function collapse and time: https://youtu.be/wXJ9eQ7qTQk.
Chapters:
By Jeremy Batterson 11-09-2021
The equivalent of cheap 100-inch binoculars will soon be possible. This memo is a quick update on seven rapidly converging technologies that augur well for astronomy enthusiasts of the near future. All these technologies already exist in either fully developed or nascent form, and all are being rapidly improved due to the gigantic global cell phone market and the retinal projection market that will soon replace it. Listed here are the multiple technologies, after which they are brought together into a single system.
1) Tracking.
2) Single-photon image sensing.
3) Large effective exit pupils via large sensors.
4) Long exposure non-photographic function.
5) Flat optics (metamaterials)
6) Off-axis function of flat optics.
7) Retinal projection.
1) TRACKING: this is already being widely used in so-called “go-to” telescopes, where the instrument will find any object and track it, so Earth’s rotation does not take the object viewed out of the field of vision. The viewer doesn’t have to find the object and doesn’t have to set up the clock drive to track it. Tracking is also partly used in image stabilization software for cameras and smart phones, to prevent motion blurring of images.
2) SINGLE-PHOTON IMAGE SENSORS, whether of the single-photon avalanching diode type, or the type developed by Dr. Fossum, will allow passive imaging in nearly totally dark environments, without the use of IR or other illumination. This new type of image sensor will replace the monochromatic analogue “night-vision” devices, allowing color imaging at higher resolution than they can produce. Unlike these current devices, such sensors will not be destroyed by being exposed to normal or high lighting. Effectively, these sensors increase the effective light-gathering power of a telescope by at least an order of magnitude, allowing small telescopes to see what observatory telescopes see now.
They’re calling it an “apogee kick motor,” but the object’s true identity and purpose remain unknown.
We all love seeing data represented in pretty ways — whether it’s necessary or not. Take VU meters for example. They’re a super useful tool for audio editors to balance signals, but they also look really cool, even if you’re only listening to music. Who didn’t use a Winamp skin with a built-in VU meter back in the day? Even after the demise of everyone’s favorite media player, we still see these great graphs popping up all over the place.
Most recently, we’ve seen VU meters circle back around to have a bit of a retro vibe in this awesome Arduino-controlled LCD VU meter built by [mircemk]. Based on the KTAudio VU Meter project, it features an ultra-wide LCD, audio input, and volume knob, all tidily wrapped up in a case whose color scheme that can only conjure images of the famed Altair 8800, or an old Tektronix oscilloscope. The LCD itself is fairly responsive — but you can judge for yourself in the video below. The signature fading that so commonly accompanies screen refreshes on LCDs such as this one really adds to the retro effect.
You may just need one of these displays on your desk — after all, while you may not need to know how loud each audio channel is, don’t you at least want the information available? Just in case. Bar graph display a bit too modern-looking for you? Well then you should check out [mircemk]’s OLED version that displays dual analog meters.
Solid Hydrogen Explained. Get Surfshark VPN at https://surfshark.deals/undecided and enter promo code UNDECIDED for 83% off and 4 extra months for free! Green hydrogen is touted to be one of the essential ingredients for the sustainable energy mix of the future. Yet, there’s an…invisible…yet big problem. Storage, transport, and operation is complicated and expensive, but what if we could create and store solid hydrogen for cheap? A start-up may have a solid technology that could speed up the energy transition. Spoiler: It’s so good it was banned!
Watch Solar Panels Plus Farming? Agrivoltaics Explained: https://youtu.be/lgZBlD-TCFE?list=PLnTSM-ORSgi5LVxHfWfQE6-Y_HnK-sgXS
Video script and citations:
https://undecidedmf.com/episodes/forget-solid-state-batterie…-explained.
Follow-up podcast: