Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

World’s first 3D-printed brain tissue that mirrors human brain function

🧠💡 Thinking about organ transplants?

🔬 A team of scientists at the University of Wisconsin–Madison has achieved a groundbreaking milestone!

🌐 They’ve developed the world’s first 3D-printed brain tissue that mirrors human brain function.

🚀 This is a giant leap forward for research into neurological and neurodevelopmental disorders.

🖨️ Utilizing a horizontal layering technique and a softer bio-ink, this 3D-printing method allows neurons to weave together, forming networks similar to those in the human brain.

🔍 This precision in controlling cell types and arrangements opens new doors for studying neurological conditions, including Alzheimer’s and Parkinson’s disease.

Activation of Dopamine D1 Receptors at the Axon Initial Segment-Like Process of Retinal AII Amacrine Cells Modulates Action Potential Firing

JNeurosci: Results from Veruki et al. show that activation of D1 receptors in rats reduces the excitability of AII amacrines by increasing the threshold of action potential initiation, suggesting a new role for DA in the retina.

🔗


Dopamine is an important neuromodulator found throughout the central nervous system that can influence neural circuits involved in sensory, motor, and cognitive functions. In the retina, dopamine is released by specific amacrine cells and plays a role in reconfiguring circuits for photopic vision. This adaptation takes place both in photoreceptors and at postreceptoral sites. The AII amacrine cell, which plays a crucial role for transmission of both scotopic and photopic visual signals, has been considered an important target of dopaminergic modulation, expressed as a change in the strength of electrical coupling mediated by gap junctions between the AIIs. It has been difficult, however, to find clear evidence for expression of dopamine receptors by AII amacrines.

Stem cell-mediated recovery in stroke: partnering with the immune system

In this Review, Saef Izzy and colleagues examine the therapeutic potential of stem cells in stroke, with a focus on neural and mesenchymal stem cells. They explore how these stem cells interact with brain immune cells to modulate the inflammatory microenvironment, restore blood–brain barrier integrity and promote tissue repair following a stroke.

/* */