A research team led by Oak Ridge National Laboratory has developed a new method to uncover the atomic origins of unusual material behavior. This approach uses Bayesian deep learning, a form of artificial intelligence that combines probability theory and neural networks to analyze complex datasets with exceptional efficiency.
The technique reduces the amount of time needed for experiments. It helps researchers explore sample regions widely and rapidly converge on important features that exhibit interesting properties.
“This method makes it possible to study a material’s properties with much greater efficiency,” said ORNL’s Ganesh Narasimha. “Usually, we would need to scan a large region, and then several small regions, and perform spectroscopy, which is very time-consuming. Here, the AI algorithm takes control and does this process automatically and intelligently.”