Toggle light / dark theme

China is trailblazing AI regulation, with the goal of being the AI leader by 2030. We look at its #AI ethics guidelines.


The best agile and lean development conferences of 2022.

The European Union had issued a preliminary draft of AI-related rules in April 2021, but we’ve seen nothing final. In the United States, the notion of ethical AI has gotten some traction, but there aren’t any overarching regulations or universally accepted best practices.

A Southwest Research Institute scientist measured the properties of ice-brine mixtures as cold as-145 degrees Fahrenheit to help confirm that salty water likely exists between grains of ice or sediment under the ice cap at Mars’ south pole. Laboratory measurements conducted by SwRI geophysicist Dr. David Stillman support oddly bright reflections detected by the MARSIS subsurface sounding radar aboard ESA’s Mars Express orbiter.

With a 130-foot antenna, MARSIS flies over the planet, bouncing radio waves over a selected area and then receiving and analyzing the echoes or reflections. Any near-surface should send a strong bright signal, whereas the radar signal for ice and rock would be much smaller.

Because conventional models assume the Mars south polar cap experiences temperatures much lower than the melting point of water, many scientists have questioned the presence of liquid water. Clay, hydrated salts and saline ices have been proposed as potential explanations for the source of the bright basal reflections. The Italian-led team investigating the proposed phenomena used previously published data, simulations and new .

Protective coatings are common for many things in daily life that see a lot of use. We coat wood floors with finish; apply Teflon to the paint on cars; even use diamond coatings on medical devices. Protective coatings are also essential in many demanding research and industrial applications.

Now, researchers at Los Alamos National Laboratory have developed and tested an atomically thin coating for next-generation, electron-beam accelerator equipment—perhaps the most challenging technical application of the technology, the success of which bears out the potential for “Atomic Armor” in a range of applications.

“Accelerators are important tools for addressing some of the faced by humanity,” said Hisato Yamaguchi, member of the Sigma-2 group at the Laboratory. “Those challenges include the quest for , continued scaling of computational power, detection and mitigation of pathogens, and study of the structure and dynamics of the building blocks of life. And those challenges all require the ability to access, observe and control matter on the frontier timescale of electronic motion and the spatial scale of atomic bonds.”

Scanning for Memories

At the time there was almost no evidence of this from neuron studies. But in 2006, Ma, Pouget and their colleagues at the University of Rochester presented strong evidence that populations of simulated neurons could perform optimal Bayesian inference calculations. Further work by Ma and other researchers over the past dozen years offered additional confirmations from electrophysiology and neuroimaging that the theory applies to vision by using machine learning programs called Bayesian decoders to analyze actual neural activity.

Neuroscientists have used decoders to predict what people are looking at from fMRI (functional magnetic resonance imaging) scans of their brains. The programs can be trained to find the links between a presented image and the pattern of blood flow and neural activity in the brain that results when people see it. Instead of making a single guess — that the subject is looking at an 85-degree angle, for instance — Bayesian decoders produce a probability distribution. The mean of the distribution represents the likeliest prediction of what the subject is looking at. The standard deviation, which describes the width of the distribution, is thought to reflect the subject’s uncertainty about the sight (is it 85 degrees or could it be 84 or 86?).

A team of engineers and neurosurgeons developed a state-of-the-art brain sensor that could greatly enhance the treatment of cancer and epilepsy, according to a press statement from the University of California San Diego.

The new apparatus can record electrical signals from the brain’s surface in a never-before-seen resolution for such a device.

The breakthrough opens up new possibilities for brain-computer interfaces, such as the ones being developed by Elon Musk’s Neuralink. Not only will this help to improve diagnoses of deadly diseases, it also has the potential to transform our understanding of the human brain.

And it took less than a full workday. Stanford Medicine scientists and their collaborators have engineered a new genome sequencing technique that can diagnose rare genetic diseases in an average of eight hours. This is a record-breaking time frame that is leap and bounds ahead of other current advanced technologies.


Gene sequencing is crucial to advancing science! Check out why cutting time and cost is key.

Could it really happen?Looks like Meta is swinging for the cheap seats.


Looks like Meta is swinging for the cheap seats.

The social media superpower Meta (formerly Facebook) has announced that it has built an “AI supercomputer” — an unconscionably fast computer designed to train and enhance machine-learning systems, according to a Monday post from Meta CEO Mark Zuckerberg.

“Meta has developed what we believe is the world’s fastest AI supercomputer,” said Zuckerberg in his post. “We’re calling it RSC for AI Research SuperCluster and it’ll be complete later this year.”