Toggle light / dark theme

A team of researchers has for the first time successfully used lasers to generate guided sound waves on the surface of a microchip. These acoustic waves, akin to the surface waves produced during an earthquake, travel across the chip at frequencies nearly a billion times higher than those found in earth tremors.

By containing the sound wave on the surface of a chip, it can more easily interact with the environment, making it a perfect candidate for advanced sensing technologies.

The findings are published in APL Photonics.

Researchers at Monash University have developed an artificial intelligence (AI) model that significantly improves the accuracy of four-dimensional scanning transmission electron microscopy (4D STEM) images.

Called unsupervised deep denoising, this model could be a game-changer for studying materials that are easily damaged during imaging, like those used in batteries and .

The research from Monash University’s School of Physics and Astronomy, and the Monash Center of Electron Microscopy, presents a novel machine learning method for denoising large electron microscopy datasets. The study was published in npj Computational Materials.

For the first time since the discovery of the material MnBi2Te4 (MBT), researchers at the University of Twente have successfully made it behave like a superconductor. This marks an important step in understanding MBT and is significant for future technologies, such as new methods of information processing and quantum computing.

MBT is a recently discovered material attracting attention due to its unique magnetic and . In their research, the scientists examined how electricity behaves in the material. The findings are published in the journal Communications Materials.

MBT’s topological properties cause electrons to move only along the edges of the material, and in theory, they should only move in a clockwise direction. However, the experiments at Twente demonstrated that under certain conditions, the electrons can rotate both clockwise and counterclockwise.

Science laboratories across disciplines—chemistry, biochemistry and materials science—are on the verge of a sweeping transformation as robotic automation and AI lead to faster and more precise experiments that unlock breakthroughs in fields like health, energy and electronics.

This is according to UNC-Chapel Hill researchers in a paper titled “Transforming Science Labs into Automated Factories of Discovery,” published in Science Robotics.

“Today, the development of new molecules, materials and requires intensive human effort,” said Dr. Ron Alterovitz, senior author of the paper and Lawrence Grossberg Distinguished Professor in the Department of Computer Science. “Scientists must design experiments, synthesize materials, analyze results and repeat the process until desired properties are achieved.”

‘’Exploring black holes’’ by Wheeler and Taylor.

A primer on black holes and general relativity.

https://pubs.aip.org/aapt/ajp/article/89/1/121/1045741/Exploring-Black-Holes


The first edition of Exploring Black Holes: Introduction to General Relativity, authored by Oersted Medal winner Edwin Taylor and foremost relativist John Archibald Wheeler, offered a concise, directed examination of general relativity and black holes. Its goal was to provide tools that motivate students to become active participants in carrying out their own investigations about curved spacetime near Earth and black holes. To that end, the book used calculus and algebra, rather than tensors, to make general relativity accessible to second-and third-year students.

These scientists aren’t focused on the existence of quantum entanglement, but are keen on uncovering how it begins — how exactly do two particles become quantum entangled?

Using advanced computer simulations, they’ve managed to peek into processes that happen on attosecond timescales — a billionth of a billionth of a second.

Quantum entanglement is a strange and fascinating phenomenon where two particles become so interconnected that they share a single state.

Researchers at MIT have unexpectedly stumbled upon a way to 3D print active electronics – meaning transistors and components for controlling electrical signals – without the use of semiconductors or even special fabrication technology.

That goes far beyond what we can currently do with 3D printers. And if perfected, this method could eventually spell the beginning of a new wave in prototyping, experimentation, and even DIY projects for tinkerers at home.

With 3D printing, any of a range of materials including thermoplastic filaments, resin, ceramic, and metal, are laid down in successive thin layers to form a three-dimensional object. That means you can print all kinds of things, from action figures to jewelry to furniture to buildings.

By Chuck Brooks & Dr. Thomas A. Cellucci, MBA


Co-written by Chuck Brooks and Dr. Thomas A. Cellucci, MBA

Verticals that will be most impacted by innovative developments in technology and science are the disciplines of medicine, biotechnology, and health. Those industry verticals will see a profound growth of technological innovation in the near future.

Twenty years ago, Craig Venter and Daniel Cohen remarked, “If the 20th century was the century of physics, the 21st century will be the century of biology.” Since then, there have been some amazing advances in the fields of biotechnology and bioscience, with the promise of even more astounding breakthroughs to come. Over the past decade, we have seen significant strides in artificial intelligence, with radical long-term implications for every human endeavor. And now the convergence of the fields of physics, biology, and AI promises a far greater impact on humanity than any one of these fields alone. Even though a path to successfully integrating these fields exists, it is neither easy nor clear cut—but if done correctly, will revolutionize medicine and human health.