Toggle light / dark theme

Today, the ECoG grids most commonly used in surgeries typically have between 16 and 64 sensors, although research grade grids with up to 256 sensors can be custom made. The device created at UCSD is therefore a major advance in the field. It could improve neurosurgeons’ ability to remove as much of a brain tumour as possible while minimising damage to healthy tissue. In the case of epilepsy, the higher resolution could enable a surgeon to precisely identify the brain regions where seizures are originating, so that these can be removed without touching nearby regions not involved in seizure initiation. In this way, these high-resolution grids may enhance preservation of normal, functioning brain tissue.

ECoG grids with sensors in the thousands could also help in uncovering a deeper understanding of how the brain functions. Basic science advances, in turn, could lead to improved treatments grounded in enhanced understanding of brain function.

The team at UCSD – who collaborated with Massachusetts General Hospital and Oregon Health & Science University – achieved their breakthrough by packing individual sensors significantly closer to each other, while avoiding problematic interference between nearby sensors. The ECoG grids already in clinical use typically have sensors that are spaced one centimetre apart. But the new 1,024-sensor device has sensors just one millimetre apart, with a total grid area measuring three by three centimetres and is scalable to 2,048 sensors.

On the largest cosmic scales, planet Earth appears to be anything but special. Like hundreds of billions of other planets in our galaxy, we orbit our parent star; like hundreds of billions of solar systems, we revolve around the galaxy; like the majority of galaxies in the Universe, we’re bound together in either a group or cluster of galaxies. And, like most galactic groups and clusters, we’re a small part of a larger structure containing over 100,000 galaxies: a supercluster. Ours is named Laniakea: the Hawaiian word for “immense heaven.”

Superclusters have been found and charted throughout our observable Universe, where they’re more than 10 times as rich as the largest known clusters of galaxies. Unfortunately, owing to the presence of dark energy in the Universe, these superclusters ⁠— including our own ⁠— are only apparent structures. In reality, they’re mere phantasms, in the process of dissolving before our very eyes.

The Universe as we know it began some 13.8 billion years ago with the Big Bang. It was filled with matter, antimatter, radiation, etc.; all the particles and fields that we know of today, and possibly even more. From the earliest instants of the hot Big Bang, however, it wasn’t simply a uniform sea of these energetic quanta. Instead, there were tiny imperfections ⁠— at about the 0.003% level ⁠— on all scales, where some regions had slightly more or slightly less matter and energy than average.

Texas Instruments kicked off earnings season for the U.S.’s semiconductor manufacturers with a bang.

The profit report, seen as an indicator of what investors can expect from other chip makers, sent the shares higher in extended trading. Profits were higher than expected and management pointed to strong demand from customers in the industrial and automotive markets.

As the world’s energy demands increase, so does our consumption of fossil fuels. The result is a massive rise in greenhouse gases emissions with severely adverse environmental effects. To address this, scientists have been searching for alternative, renewable sources of energy.

A main candidate is hydrogen produced from organic waste, or “biomass,” of plants and animals. Biomass also absorbs, removes, and stores CO2 from the atmosphere, while biomass decomposition can also bring us ways to negative emissions or greenhouse gases removal. But even though biomass heralds a way forward, there is still the question of the best way to maximize its conversion into energy.

There are currently two main methods for converting biomass into energy: gasification and pyrolysis. Gasification puts solid or liquid biomass at temperatures around 1000°C, converting it into gas and solid compounds; the gas is called “syngas” while the solid is “biochar.”

Today, we come across a new video about the Rivian EDV — actually, it’s a pre-production prototype, spotted at a fast-charging station.

The video gives us a good look at the vehicle, although according to the description, the driver was not particularly happy with the recording of the van. The video description says that the “driver wanted to call cops on me.”

Considering some of the details, it appears to be the same type as another early unit seen in December 2021 in Woodhaven (south of Detroit), Michigan.

It looks whimsical, but it could be a blueprint for fixing our woeful infrastructure in the U.S.


After four long years of planning, the world’s first 3D-printed steel bridge debuted in Amsterdam last month. If it stands up to the elements, the bridge could be a blueprint for fixing our own structurally deficient infrastructure in the U.S.—and we sorely need the help.

Dutch Company MX3D built the almost 40-foot-long bridge for pedestrians and cyclists to cross the city’s Oudezijds Achterburgwal canal. It relied on four robots, fit with welding torches, to 3D-print the structure. To do it, the machines laid out 10,000 pounds of steel, heated to 2,732 degrees Fahrenheit, in an intricate layering process. The result? An award-winning design, pushing the boundaries of what steel can do.

China is trailblazing AI regulation, with the goal of being the AI leader by 2030. We look at its #AI ethics guidelines.


The best agile and lean development conferences of 2022.

The European Union had issued a preliminary draft of AI-related rules in April 2021, but we’ve seen nothing final. In the United States, the notion of ethical AI has gotten some traction, but there aren’t any overarching regulations or universally accepted best practices.

A Southwest Research Institute scientist measured the properties of ice-brine mixtures as cold as-145 degrees Fahrenheit to help confirm that salty water likely exists between grains of ice or sediment under the ice cap at Mars’ south pole. Laboratory measurements conducted by SwRI geophysicist Dr. David Stillman support oddly bright reflections detected by the MARSIS subsurface sounding radar aboard ESA’s Mars Express orbiter.

With a 130-foot antenna, MARSIS flies over the planet, bouncing radio waves over a selected area and then receiving and analyzing the echoes or reflections. Any near-surface should send a strong bright signal, whereas the radar signal for ice and rock would be much smaller.

Because conventional models assume the Mars south polar cap experiences temperatures much lower than the melting point of water, many scientists have questioned the presence of liquid water. Clay, hydrated salts and saline ices have been proposed as potential explanations for the source of the bright basal reflections. The Italian-led team investigating the proposed phenomena used previously published data, simulations and new .

Protective coatings are common for many things in daily life that see a lot of use. We coat wood floors with finish; apply Teflon to the paint on cars; even use diamond coatings on medical devices. Protective coatings are also essential in many demanding research and industrial applications.

Now, researchers at Los Alamos National Laboratory have developed and tested an atomically thin coating for next-generation, electron-beam accelerator equipment—perhaps the most challenging technical application of the technology, the success of which bears out the potential for “Atomic Armor” in a range of applications.

“Accelerators are important tools for addressing some of the faced by humanity,” said Hisato Yamaguchi, member of the Sigma-2 group at the Laboratory. “Those challenges include the quest for , continued scaling of computational power, detection and mitigation of pathogens, and study of the structure and dynamics of the building blocks of life. And those challenges all require the ability to access, observe and control matter on the frontier timescale of electronic motion and the spatial scale of atomic bonds.”