Menu

Blog

Page 5580

Jun 25, 2021

Fetch! Solving dog longevity can benefit human antiaging research

Posted by in category: life extension

Loyal founder Celine Halioua talks about the inspiration behind her journey into aging science and why dog longevity has relevance in humans.

Jun 25, 2021

Crackonosh virus mined $2 million of Monero from 222,000 hacked computers

Posted by in categories: biotech/medical, cryptocurrencies, cybercrime/malcode

A malware called Crackonosh infected 222000 PCs in order to mine $2 million worth of Monero cryptocurrency.

Jun 25, 2021

Vulnerabilities in Dell laptops’ software allow hackers to execute code remotely in millions of devices

Posted by in category: cybercrime/malcode

Cybersecurity experts reported the detection of at least four flaws in Dell SupportAsist’s BIOSConnect feature, the exploitation of which would allow threat actors to deploy remote code to affected devices. It should be noted that this software is preinstalled by default on most Dell computers running Windows systems, and BIOSConnect allows remote firmware update and some operating system recovery features.

This set of flaws received a score of 8.3÷10 on the Common Vulnerability Scoring System (CVSS) scale, and its exploitation would allow privileged remote hackers on the target system to impersonate an official Dell service in order to take control of the operating system boot process and thus break any security controls enabled. So far no active exploitation attempts or a functional attack have been detected for the abuse of these flaws.

Continue reading “Vulnerabilities in Dell laptops’ software allow hackers to execute code remotely in millions of devices” »

Jun 25, 2021

These tiny indestructible tardigrades will reveal how to survive in extremes of space

Posted by in category: space

Tardigrades have previously survived in the vacuum of space.


Indestructible water-dwelling creatures called tardigrades will be subject to a series of experiments at the International Space Station to reveal how they survive in extreme environments.

Jun 25, 2021

Record breaker: Scientists spot earliest known supermassive black hole ‘storm’

Posted by in category: cosmology

A massive maelstrom that raged in the universe’s youth could help scientists better understand how galaxies and their central black holes interact.

Most, if not all, galaxies harbor a supermassive black hole at their core. Our own Milky Way has one, for example — a behemoth known as Sagittarius A*, which is about as massive as 4.3 million suns.

Jun 25, 2021

Are we ready? Advances in CRISPR means the era of germline gene editing has arrived

Posted by in categories: bioengineering, biotech/medical, ethics

Quick, accurate and easy-to-use, CRISPR-Cas9 has made genomic editing more efficient—but at the same time has made human germline editing much more feasible, erasing many of the ethical barriers erected to prevent scientists from editing the genes of heredity.

“The ethical debate about what is now called human gene editing has gone on for more than 50 years,” writes Dr. John H. Evans, co-director of the Institute for Practical Ethics at the University of California, San Diego. “For nearly that entire time, there has been consensus that a moral divide exists between somatic and human germline editing.”

In an essay published in the Proceedings of the National Academy of Sciences (PNAS), Evans contends that many of the potent bioethical arguments that once made germline editing a verboten concept, have begun to dissolve in the era of CRISPR.

Jun 25, 2021

Rare Superconductor Discovered – May Be Critical for the Future of Quantum Computing

Posted by in categories: energy, quantum physics, supercomputing

Research led by Kent and the STFC Rutherford Appleton Laboratory has resulted in the discovery of a new rare topological superconductor, LaPt3P. This discovery may be of huge importance to the future operations of quantum computers.

Superconductors are vital materials able to conduct electricity without any resistance when cooled below a certain temperature, making them highly desirable in a society needing to reduce its energy consumption.

They manifest quantum properties on the scale of everyday objects, making them highly attractive candidates for building computers that use quantum physics to store data and perform computing operations, and can vastly outperform even the best supercomputers in certain tasks. As a result, there is an increasing demand from leading tech companies like Google, IBM and Microsoft to make quantum computers on an industrial scale using superconductors.

Jun 25, 2021

Spintronics Advances: Efficient Magnetization Direction Control of Magnetite for High-Density Spintronic Memory Devices

Posted by in categories: computing, particle physics, quantum physics

Scientists develop an energy-efficient strategy to reversibly change ‘spin orientation’ or magnetization direction in magnetite at room temperature.

Over the last few decades, conventional electronics has been rapidly reaching its technical limits in computing and information technology, calling for innovative devices that go beyond the mere manipulation of electron current. In this regard, spintronics, the study of devices that exploit the “spin” of electrons to perform functions, is one of the hottest areas in applied physics. But, measuring, altering, and, in general, working with this fundamental quantum property is no mean feat.

Current spintronic devices — for example, magnetic tunnel junctions — suffer from limitations such as high-power consumption, low operating temperatures, and severe constraints in material selection. To this end, a team of scientists at Tokyo University of Science and the National Institute for Materials Science (NIMS), Japan, has published a study in ACS Nano, in which they present a surprisingly simple yet efficient strategy to manipulate the magnetization angle in magnetite (Fe3O4), a typical ferromagnetic material.

Jun 25, 2021

Continuous-capture microwave imaging

Posted by in categories: computing, information science, space

Advanced uses of time in image rendering and reconstruction have been the focus of much scientific research in recent years. The motivation comes from the equivalence between space and time given by the finite speed of light c. This equivalence leads to correlations between the time evolution of electromagnetic fields at different points in space. Applications exploiting such correlations, known as time-of-flight (ToF)1 and light-in-flight (LiF)2 cameras, operate at various regimes from radio3,4 to optical5 frequencies. Time-of-flight imaging focuses on reconstructing a scene by measuring delayed stimulus responses via continuous wave, impulses or pseudo-random binary sequence (PRBS) codes1. Light-in-flight imaging, also known as transient imaging6, explores light transport and detection2,7. The combination of ToF and LiF has recently yielded higher accuracy and detail to the reconstruction process, especially in non-line-of-sight images with the inclusion of higher-order scattering and physical processes such as Rayleigh–Sommerfeld diffraction8 in the modeling. However, these methods require experimental characterization of the scene followed by large computational overheads that produce images at low frame rates in the optical regime. In the radio-frequency (RF) regime, 3D images at frame rates of 30 Hz have been produced with an array of 256 wide-band transceivers3. Microwave imaging has the additional capability of sensing through optically opaque media such as walls. Nonetheless, synthetic aperture radar reconstruction algorithms such as the one proposed in ref. 3 required each transceiver in the array to operate individually thus leaving room for improvements in image frame rates from continuous transmit-receive captures. Constructions using beamforming have similar challenges9 where a narrow focused beam scans a scene using an array of antennas and frequency modulated continuous wave (FMCW) techniques.

In this article, we develop an inverse light transport model10 for microwave signals. The model uses a spatiotemporal mask generated by multiple sources, each emitting different PRBS codes, and a single detector, all operating in continuous synchronous transmit-receive mode. This model allows image reconstructions with capture times of the order of microseconds and no prior scene knowledge. For first-order reflections, the algorithm reduces to a single dot product between the reconstruction matrix and captured signal, and can be executed in a few milliseconds. We demonstrate this algorithm through simulations and measurements performed using realistic scenes in a laboratory setting. We then use the second-order terms of the light transport model to reconstruct scene details not captured by the first-order terms.

We start by estimating the information capacity of the scene and develop the light transport equation for the transient imaging model with arguments borrowed from basic information and electromagnetic field theory. Next, we describe the image reconstruction algorithm as a series of approximations corresponding to multiple scatterings of the spatiotemporal illumination matrix. Specifically, we show that in the first-order approximation, the value of each pixel is the dot product between the captured time series and a unique time signature generated by the spatiotemporal electromagnetic field mask. Next, we show how the second-order approximation generates hidden features not accessible in the first-order image. Finally, we apply the reconstruction algorithm to simulated and experimental data and discuss the performance, strengths, and limitations of this technique.

Jun 25, 2021

An AI algorithm just completed a famous Rembrandt painting

Posted by in categories: information science, military, robotics/AI

And they say computers can’t create art.


In 1642, famous Dutch painter Rembrandt van Rijn completed a large painting called Militia Company of District II under the Command of Captain Frans Banninck Cocq — today, the painting is commonly referred to as The Night Watch. It was the height of the Dutch Golden Age, and The Night Watch brilliantly showcased that.

The painting measured 363 cm × 437 cm (11.91 ft × 14.34 ft) — so big that the characters in it were almost life-sized, but that’s only the start of what makes it so special. Rembrandt made dramatic use of light and shadow and also created the perception of motion in what would normally be a stationary military group portrait. Unfortunately, though, the painting was trimmed in 1715 to fit between two doors at Amsterdam City Hall.

Continue reading “An AI algorithm just completed a famous Rembrandt painting” »