Toggle light / dark theme

Project Harbour Club, by Levs Architecten, is an interesting new development in Amsterdam that involved renovating and extending a shipping terminal originally constructed in 1901. Most notably, the project transformed former industrial wine silos that were located on the site into unique rooftop homes.

Project Harbour Club is located in Amsterdam’s Cruquiuseiland, in the city’s eastern docklands. It’s made up of the original dock terminal building, a new entrance, a six-story L-shaped residential building that slots neatly into the site, and the three silo homes.

The silos were originally used to store bulk wine for the Dutch market. To make them safe for people to live in, they were first carefully cleared of any traces of harmful residues, had insulation fitted, generous glazing cut into place, and a comfortable and light-filled interior installed. This is spread over three floors and contains a dining area, kitchen, living room, bedroom, and bathroom.

Scientists from the University of Surrey and Imperial College London have achieved an increase in energy absorption in ultra-thin solar panels by 25%, a record for panels of this size.

The team, which collaborated with AMOLF in Amsterdam, used solar panels just one micrometer thick with a disordered honeycomb layer on top of the silicon panel. The biophilic design draws inspiration from butterfly wings and bird eyes to absorb sunlight from every possible angle, making the panels more efficient.

The research led to a 25% increase in levels of energy absorption by the panels, making these solar panels more efficient than other one-micrometer-thick panels. They published their findings in the American Chemical Society’s journal, Photonics.

Neural networks keep getting larger and more energy-intensive. As a result, the future of AI depends on making AI run more efficiently and on smaller devices.

That’s why it’s alarming that progress is slowing on making AI more efficient.

The most resource-intensive aspect of AI is data transfer. Transferring data often takes more time and power than actually computing with it. To tackle this, popular approaches today include reducing the distance that data needs to travel and the data size. There is a limit to how small we can make chips, so minimizing distance can only do so much. Similarly, reducing data precision works to a point but then starts to hurt performance.

What a time to be alive… We are on the verge of discovering the fifth dimension and it will change everything we know about the Universe.


Scientists are sometimes questioned if they conduct fresh experiments in the lab or continue to repeat previous ones for which they have certain outcomes. While most scientists undertake the former, scientific advancement also relies on conducting the latter and validating whether what we think we know remains true in light of fresh knowledge.

𝐄𝐱𝐩𝐞𝐫𝐭 𝐒𝐚𝐲𝐬 𝐇𝐮𝐦𝐚𝐧𝐬 𝐂𝐨𝐮𝐥𝐝 𝐋𝐢𝐯𝐞 𝐋𝐨𝐧𝐠𝐞𝐫 𝐛𝐲 𝐔𝐩𝐥𝐨𝐚𝐝𝐢𝐧𝐠


Experts believe that with new AI and metaverse technologies, humans could upload to their brain to the web and potentially live longer.

Local consciousness, or our phenomenal mind, is emergent, whereas non-local consciousness, or universal mind, is immanent. Material worlds come and go, but fundamental consciousness is ever-present, according to the Cybernetic Theory of Mind. From a new science of consciousness to simulation metaphysics, from evolutionary cybernetics to computational physics, from physics of time and information to quantum cosmology, this novel explanatory theory for a deeper understanding of reality is combined into one elegant theory of everything.

#CyberneticTheoryofMind #Consciousness #Evolution #Mind #Documentary


Based on The Cybernetic Theory of Mind eBook series (2022) by Alex M. Vikoulov as well as his magnum opus The Syntellect Hypothesis: Five Paradigms of the Mind’s Evolution (2020), comes a recently-released documentary Consciousness: Evolution of the Mind.

Why do industrial robots require teams of engineers and thousands of lines of code to perform even the most basic, repetitive tasks while giraffes, horses, and many other animals can walk within minutes of their birth?

My colleagues and I at the USC Brain-Body Dynamics Lab began to address this question by creating a robotic limb that learned to move, with no prior knowledge of its own structure or environment [1,2]. Within minutes, G2P, our reinforcement learning algorithm implemented in MATLAB®, learned how to move the limb to propel a treadmill (Figure 1).