Menu

Blog

Page 5419

Dec 12, 2021

Physicists Explain How Human Eyes Can Detect Quantum Effects

Posted by in category: quantum physics

(PhysOrg.com) — By greatly amplifying one photon from an entangled photon pair, physicists have theoretically shown that human eyes can be used as detectors to observe quantum effects. Usually, detecting quantum phenomena requires sensitive photon detectors or similar technology, keeping the quantum world far removed from our everyday experience. By showing that it’s possible to perform quantum optics experiments with human eyes as detectors, the physicists can bring quantum phenomena closer to the macroscopic level and to everyday life.

The group of physicists is from the University of Geneva, and includes Pavel Sekatski, Nicolas Brunner (also from the University of Bristol), Cyril Branciard, Nicolas Gisin, and Christoph Simon. In their study published in a recent issue of Physical Review Letters, the scientists theoretically show how human eyes can be used to detect a large Bell inequality violation, which proves the existence of .

As the physicists explain, the key to achieving detection of quantum effects is to use the process of quantum cloning by stimulated emission. Recently, using quantum cloning, researchers in Rome have experimentally created tens of thousands of clones starting from a single-photon. Then, by amplifying one photon of an entangled pair, the researchers managed to demonstrate entanglement. In order to do this, specific detectors are required, which can distinguish two orthogonal amplified states with a high success rate.

Dec 12, 2021

Amprius Reports Extreme Fast Charge Battery: 0–80% In 6 Minutes

Posted by in categories: energy, nanotechnology

Amprius Technologies announced that its lithium-ion battery cells with silicon anode (Si-Nanowire platform) achieved a breakthrough fast charging capability of 0–80% state-of-charge (SOC) in just 6 minutes (10C current).

The capability of extreme fast charging has been validated and confirmed by Mobile Power Solutions for three 2.75 Ah sample pouch cells (see report here). It actually took less than 6 minutes to achieve 80% SOC.

0–70% charging takes less than 5 minutes, and 0–90% is usually above 8 minutes. Then, the charging rate is much slower, so 100% is achieved after 25–27 minutes (90–100% takes 17–19 minutes).

Dec 12, 2021

Dubai to expand network for electric scooters to 10 areas from early next year

Posted by in category: futurism

City Walk, Palm Jumeirah and some areas of Al Karama, Al Qusais and Al Mankhool will soon have designated e-scooter tracks.

Dec 12, 2021

3 Areas Where AI Will Boost Your Competitive Advantage

Posted by in categories: information science, robotics/AI

Algorithms are now essential for making predictions, boosting efficiency, and optimizing in real-time.

Dec 12, 2021

Inside Clean Energy

Posted by in categories: energy, sustainability, transportation

The price of the batteries that power electric vehicles has fallen by about 90 percent since 2010, a continuing trend that will soon make EVs less expensive than gasoline vehicles.

This week, with battery pricing figures for 2021 now available, I wanted to get a better idea of what the near future will look like.

First, the numbers: The average price of lithium-ion battery packs fell to $132 per kilowatt-hour in 2021, down 6 percent from $140 per kilowatt-hour the previous year, according to the annual battery price survey from BloombergNEF. The new average is a step closer to the benchmark of $100 per kilowatt-hour, which researchers say is the approximate point where EVs will cost about the same as gasoline-powered vehicles.

Dec 12, 2021

Nuclear Fusion: Why the Race to Harness the Power of the Sun Just Sped Up

Posted by in categories: computing, physics

A nervous excitement hangs in the air. Half a dozen scientists sit behind computer screens, flicking between panels as they make last-minute checks. “Go and make the gun dangerous,” one of them tells a technician, who slips into an adjacent chamber. A low beep sounds. “Ready,” says the person running the test. The control room falls silent. Then, boom.

Next door, 3 kilograms of gunpowder has compressed 1,500 liters of hydrogen to 10,000 times atmospheric pressure, launching a projectile down the 9-meter barrel of a two-stage light gas gun at a speed of 6.5 kilometers per second, about 10 times faster than a bullet from a rifle.

On the monitors the scientists are checking the next stage, when the projectile slams into the target—a small transparent block carefully designed to amplify the force of the collision. The projectile needs to hit its mark perfectly flush. The slightest rotation risks derailing the carefully calibrated physics.

Dec 12, 2021

China’s Hypersonic Aircraft Engine Bases Design from NASA’s Scrapped Project in the 90s

Posted by in category: transportation

China’s new hypersonic aircraft based its design on an ambitious proposal that NASA rejected back in the 90s.

Dec 12, 2021

NASA/DARPA Scientists Found a Way To Create an Actual Warp Bubble (In Theory)

Posted by in categories: bitcoin, cryptocurrencies, space

Good telescope that I’ve used to learn the basics: https://amzn.to/35r1jAk.
Get a Wonderful Person shirt: https://teespring.com/stores/whatdamath.
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about a new study that discusses how we could potentially create an actual (but tiny) warp bubble.
Links:
https://www.limitlessspace.org/
https://thedebrief.org/darpa-funded-researchers-accidentally…63vzz&s=03
https://link.springer.com/content/pdf/10.1140/epjc/s10052-021-09484-z.
https://en.wikipedia.org/wiki/Alcubierre_drive.

Continue reading “NASA/DARPA Scientists Found a Way To Create an Actual Warp Bubble (In Theory)” »

Dec 12, 2021

Towards quantum 2.0 technology: where the best opportunities for business lie

Posted by in categories: business, computing, encryption, mobile phones, quantum physics

James McKenzie is excited about the prospects of firms that are developing technology based on seemingly esoteric fundamental quantum phenomena.

Physicists have long boasted of their success in what’s known as “quantum 1.0” technology – semiconductor junctions, transistors, lasers and so on. Thanks to their efforts over the last 75 years, we have smart phones, computers, laptops and other quantum-enabled devices that have transformed our lives. But the future will increasingly depend on “quantum 2.0” technology, which taps into phenomena like superposition and entanglement to permit everything from quantum computing and cryptography to quantum sensing, timing and imaging.

The incredible possibilities of quantum 2.0 were brought home to me when I attended the UK’s National Quantum Technologies Showcase in central London last month. The event featured more than 60 exhibitors and I was amazed how far things have progressed. In fact, it coincided with two positive developments. One was an announcement by UK Research and Innovation (UKRI) of a further £50m to support quantum industrial projects. The other was the UK and US signing a joint “statement of intent” to boost collaboration on quantum science and technologies.

Dec 12, 2021

UK Steps Up Efforts To Combat Omicron Spread

Posted by in category: biotech/medical

Britain on Sunday announced additional measures to stop the spread of the Omicron coronavirus variant, including the extension of booster jabs to people over 30.

From Tuesday, fully vaccinated contacts of people who test positive for Covid-19 will be required to take daily lateral flow tests for seven days.

But those who have not had one or two shots of a Covid vaccine will have to self-isolate for 10 days, the Department of Health and Social Care said.