Mar 27, 2022
The Quiet Revolution in Space Tech
Posted by Montie Adkins in categories: futurism, space
From $10,000 per kg, possibly down to $15 per kg to orbit.
What it means for the future of humanity.
From $10,000 per kg, possibly down to $15 per kg to orbit.
What it means for the future of humanity.
“Time-resolved photon-counting plays an indispensable role in precision metrology in both classical and quantum regimes. In particular, time-correlated single-photon counting (TCSPC) has been the key enabling technology for applications such as low-light fluorescence lifetime spectroscopy and photon counting time-of-flight (ToF) 3D imaging. However, state-of-the-art TCSPC single-photon timing resolution (SPTR) is limited in the range of 10–100 ps by the available single-photon detector technology. In this paper, we experimentally demonstrate a time-magnified TCSPC (TM-TCSPC) that achieves an unprecedentedly short SPTR of 550 fs for the first time with an off-the-shelf single-photon detector. The TM-TCSPC can resolve ultrashort pulses with a 130-fs pulsewidth difference at a 22-fs accuracy. When applied to photon counting ToF 3D imaging, the TM-TCSPC greatly suppresses the range walk error that limits all photon counting ToF 3D imaging systems by 99.2 % (130 times) and thus provides unprecedentedly high depth measurement accuracy and precision of 26 {\mu}m and 3 {\mu}m, respectively.”
The 1kW pico-hydro generation system can be used with factory drainage systems and irrigation canals. According to the manufacturer, it is made with 3D-printed sustainable materials based on recycled plastics and is able to generate electricity even with a small stream of water. Solar and storage may be linked to the system to ensure stable power supply.
It would take 15 billion years for the clock that occupies Jun Ye’s basement lab at the University of Colorado to lose a second—about how long the uni.
Using density functional theory calculations and the Greens’s function formalism, we report the existence of magnetic edge states with a non-collinear spin texture present on different edges of the 1T’ phase of the three monolayer transition metal dichalcogenides (TMDs): MoS$_2$, MoTe$_2$ and WTe$_2$. The magnetic states are gapless and accompanied by a spontaneous breaking of the time-reversal symmetry. This may have an impact on the prospects of utilizing WTe$_2$ as a quantum spin Hall insulator. It has previously been suggested that the topologically protected edge states of the 1T’ TMDs could be switched off by applying a perpendicular electric field. We confirm with fully self-consistent DFT calculations, that the topological edge states can be switched off. The investigated magnetic edge states are seen to be robust and remains gapless when applying a field.
Tesla CEO Elon Musk polled Twitter on Saturday, asking whether a new social media platform should be created to challenge Twitter and sparking speculation that the billionaire might be the one to do so.
In a series of tweets on Friday, the Space X founder asked if the time has come for a new platform to replace Twitter, and whether users thought the company ‘adhered to free speech principles.’
He said that, because Twitter serves as ‘the de factor public town square,’ a failure to promote free speech on the app would undermine democracy.
Physicists at the University of Sussex have discovered that black holes exert a pressure on their environment, in a scientific first.
In 1974 Stephen Hawking made the seminal discovery that black holes emit thermal radiation. Previous to that, black holes were believed to be inert, the final stages of a dying heavy star.
The University of Sussex scientists have shown that they are in fact even more complex thermodynamic systems, with not only a temperature but also a pressure.
The prospects for directly testing a theory of quantum gravity are poor, to put it mildly. To probe the ultra-tiny Planck scale, where quantum gravitational effects appear, you would need a particle accelerator as big as the Milky Way galaxy. Likewise, black holes hold singularities that are governed by quantum gravity, but no black holes are particularly close by — and even if they were, we could never hope to see what’s inside. Quantum gravity was also at work in the first moments of the Big Bang, but direct signals from that era are long gone, leaving us to decipher subtle clues that first appeared hundreds of thousands of years later.
But in a small lab just outside Palo Alto, the Stanford University professor Monika Schleier-Smith and her team are trying a different way to test quantum gravity, without black holes or galaxy-size particle accelerators. Physicists have been suggesting for over a decade that gravity — and even space-time itself — may emerge from a strange quantum connection called entanglement. Schleier-Smith and her collaborators are reverse-engineering the process. By engineering highly entangled quantum systems in a tabletop experiment, Schleier-Smith hopes to produce something that looks and acts like the warped space-time predicted by Albert Einstein’s theory of general relativity.
I have read about how you refuel an electric car is different. You don’t want to power an electric car on a power grid that uses fossil fuel. The goal is to have fully green refueling. I have theorized many things from my posts, such as using solar or wind with hydrogen storage. Also the components used to make batteries have an impact on the environment, unless I am wrong, as I can be wrong. I guess what I read must be wrong and Facebooks independent fact checkers are right. They always are right, and we must follow them. So please do.
Tiny biological computers made of DNA could revolutionize the way we diagnose and treat a slew of diseases, once the technology is fully fleshed out. However, a major stumbling block for these DNA-based devices, which can operate in both cells and liquid solutions, has been how short-lived they are. Just one use and the computers are spent.
Now, researchers at the National Institute of Standards and Technology (NIST) may have developed long-lived biological computers that could potentially persist inside cells. In a paper published in the journal Science Advances, the authors forgo the traditional DNA-based approach, opting instead to use the nucleic acid RNA to build computers. The results demonstrate that the RNA circuits are as dependable and versatile as their DNA-based counterparts. What’s more, living cells may be able to create these RNA circuits continuously, something that is not readily possible with DNA circuits, further positioning RNA as a promising candidate for powerful, long-lasting biological computers.
Much like the computer or smart device you are likely reading this on, biological computers can be programmed to carry out different kinds of tasks.
A new study led by the Massachusetts Institute of Technology has found that a group of neurons in the brain’s striatum encodes information about the potential outcomes of different decisions. The study was published in the journal, ‘Nature Communications’.
A group of neurons in the brain become particularly active when a behaviour leads to a different outcome than what was expected, which the researchers believed helped the brain adapt to changing circumstances. “A lot of this brain activity deals with surprising outcomes because if an outcome is expected, there’s really nothing to be learned. What we see is that there’s a strong encoding of both unexpected rewards and unexpected negative outcomes,” said Bernard Bloem, a former MIT postdoc and one of the lead authors of the new study.
Impairments in this kind of decision-making are a hallmark of many neuropsychiatric disorders, especially anxiety and depression. The new findings suggested that slight disturbances in the activity of these striatal neurons could swing the brain into making impulsive decisions or becoming paralyzed with indecision, the researchers said. The striatum, located deep within the brain, is known to play a key role in making decisions that require evaluating the outcomes of a particular action. In this study, the researchers wanted to learn more about the neural basis of how the brain makes cost-benefit decisions, in which a behaviour can have a mixture of positive and negative outcomes.