Toggle light / dark theme

Circa 2012


In nature, you’ll find animals that undergo vast transformations, becoming almost unrecognizable in their new forms. Examples like caterpillars becoming butterflies and tadpoles becoming frogs almost look like distinct animals in the different stages of their evolution.

While this might sound amazing, all stages of these animals still belong to the same biological taxonomic rank, Animalia. This means that caterpillars don’t become plants, in their new shapes, they remain animals. That’s not what Mesodinium chamaeleon does. This single-celled organism is a unique mix of animal and plant life.

Mesodinium chamaeleon, a ciliate –a group of protozoans – found in the oceans around Scandinavia and North America, was discovered in Nivå Bay (Baltic Sea) in Denmark by Øjvind Moestrup of the University of Copenhagen and his team. Other specimens have been found off the coasts of Finland and Rhode Island.

For the past fifty years of space exploration, mass spectrometry has provided unique chemical and physical insights on the characteristics of other planetary bodies in the Solar System. A variety of mass spectrometer types, including magnetic sector, quadrupole, time-of-flight, and ion trap, have and will continue to deepen our understanding of the formation and evolution of exploration targets like the surfaces and atmospheres of planets and their moons. An important impetus for the continuing exploration of Mars, Europa, Enceladus, Titan, and Venus involves assessing the habitability of solar system bodies and, ultimately, the search for life—a monumental effort that can be advanced by mass spectrometry. Modern flight-capable mass spectrometers, in combination with various sample processing, separation, and ionization techniques enable sensitive detection of chemical biosignatures.