Toggle light / dark theme

Operators of the ALICE detector have observed the first direct evidence of the “dead cone effect,” allowing them to assess the mass of the elusive charm quark.


The ALICE collaboration at the Large Hadron Collider (LHC) in Geneva, Switzerland, recently made the first observation of an important aspect of particle physics called the “dead cone effect.”

The effect is a fundamental element of the strong nuclear force — one of the four fundamental forces of nature — responsible for binding quarks and gluons. These are the fundamental particles that comprise hadrons, such as protons and neutrons, that in turn make up all atomic nuclei, which are never seen on their own under normal circumstances, only at the kind of high energy levels generated at the LHC.

“We made a direct observation of an effect in the theory of the strong force called the dead-cone effect,” experimental high energy physicist at CERN, Nima Zardoshti, tells Popular Mechanics. “This is a part of the theory that had been predicted for a while but had not been directly observed until now.”

Scientists believe it likely that the two genes, PEN1 and SYP122, paved the way for all terrestrial plant life.

Researchers from the University of Copenhagen have shed new light on how plant life got established on the surface of our planet. They specifically demonstrated that two genes are crucial for terrestrial plants to protect themselves against fungal attack – a defense mechanism that dates back 470 million years. These defenses most likely paved the way for all terrestrial plant life.

“So fascinating and yet scary how unfathomably vast space is,” comments a user.

A marvelous animation takes those who view it on an illuminating adventure through outer space, beyond the Milky Way and ultimately to the edge of the known universe. Included in the journey are stunning revelations about the difficult-to-comprehend nature of distances measured in light years.

New research suggests that Darwinian evolution could be happening up to four times faster than previously thought, based on an analysis of genetic variation.

The more genetic differences there are in a species, the faster evolution can happen, as certain traits die off and stronger ones get established. The team behind this latest study calls it the “fuel of evolution”, and they looked at data on 19 different wild animal groups around the world.

That data analysis revealed this raw material for evolution is more abundant than earlier estimates, and as a result we may have to adjust our expectations for how quickly animals evolve – a pertinent question in our age of climate change.

Chopping down trees and processing the wood isn’t the most efficient or environmentally friendly way to make furniture or building materials. Scientists at MIT have now made breakthroughs in a process that could one day let us 3D print and grow wood directly into the shape of furniture and other objects.

Wood may be a renewable resource, but we’re using it up much faster than we’re replenishing it. Deforestation is having a drastic impact on wildlife and exacerbating the effects of climate change. Since our appetite for wooden products isn’t likely to change, our methods for obtaining it will have to.

In recent years, researchers have turned to growing wood in the lab. Not trees – just the wood itself, not unlike the ongoing work into cultivating animal cells for lab-grown meat, rather than raising live animals and slaughtering them. And now, a team of MIT scientists has demonstrated a new technique that can grow wood-like plant material in the lab, allowing for easy tuning of properties like weight and strength as needed.

Circa 2018 immortality of the kidneys.


Kidney regeneration from pluripotent stem cells is receiving a lot of attention because limited treatments are currently available for chronic kidney disease (CKD). It has been shown that uremic state in CKD is toxic to somatic stem/progenitor cells, such as endothelial progenitor and mesenchymal stem cells, affecting their differentiation and angiogenic potential. Recent studies reported that specific abnormalities caused by the non-inherited disease are often retained in induced pluripotent stem cell (iPSC)-derived products obtained from patients. Thus, it is indispensable to first assess whether iPSCs derived from patients with CKD due to non-inherited disease (CKD-iPSCs) have the ability to generate kidneys.

Circa 2021 First breakthrough in immortality of the eyes of rats using the inducing of pluripotent stem cells in the eye. Which will eventually lead to immortality of the human eye.


The retina is neural tissue located in the posterior part of the eye and is an extension of the central nervous system (CNS), which has limited regenerative potential once damaged1. Therefore, to maintain homeostasis of the retinal microenvironment and protect itself from harmful stimuli, the retina has a unique structure consisting of inner and outer blood-retinal barriers (BRBs)2,3,4. The outer BRB is mainly composed of retinal pigment epithelial (RPE) cells, which support photoreceptor cells, the primary neurons in the retina, and play a significant role in the pathogenesis of retinal degenerative disorders, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP)5,6,7,8,9. These disorders are commonly characterized by the irreversible loss of photoreceptor cells and RPE cells, and the only fundamental treatment for these retinal degenerative disorders is replacement of damaged or atrophied cells10,11,12. Thus, regenerative treatments, such as stem cell transplantation, are emerging as attractive options for targeting retinal degeneration that was previously considered untreatable13.

RP refers to a set of hereditary retinal degenerative disorders that initially involve photoreceptors and leads to subsequent RPE cell damage; it affects 1 in 4,000 individuals worldwide9. Due to its inherent nature, extensive genetic studies are ongoing, and more than 50 causal genes have been identified14. Among the causal genes, PDE6B is a gene that encodes rod cGMP-phosphodiesterase, which is a critical component of the biochemical light transduction pathway9. Although various molecular and genetic studies have identified the pathomechanisms of RP, attempts to restore vision in patients with RP have failed. To overcome this issue, preclinical stem cell-based studies involving transient dosing or permanent implantation of pluripotent stem cells are being conducted10,11,15,16.

Permanent implantation of retinal stem cells is a promising method and is highly expected to be a potential alternative treatment strategy for replacing damaged retinal cells13,16. Sharma et al.17 manufactured clinical-grade AMD patient stem cell-derived RPE cells using RPE patches of a biodegradable scaffold, and functionally validated the effects of their transplantation. This researchers provided a pipeline for the generation of clinical-grade induced pluripotent stem cell (iPSC)-derived RPE cells, and histologically and functionally validated the efficacy of transplantation, thereby significantly advancing the retinal stem cell transplantation field; however, a single RPE cell transplantation cannot rescue already compromised photoreceptor cells and can be only applied in early stages of retinal degenerative diseases, when there are sufficient functional photoreceptor cells.