Menu

Blog

Page 5089

Jun 12, 2022

Friction Is Key in Domino Physics

Posted by in category: biotech/medical

A major campaign of domino-toppling simulations yields new insights into the effects of friction.

Despite the apparent simplicity of toppling dominoes, physicists still don’t have a complete model of the phenomenon. But new numerical simulations get a step closer by untangling the influence of two types of friction—one between neighboring dominoes and the other between each domino and the surface beneath it [1]. The researchers found that, in some cases, these two friction coefficients play competing roles in determining the speed of the domino cascade. They also found that one of the coefficients behaves similar to friction in granular systems such as piles of sand or pharmaceutical pills, suggesting that the domino simulations may provide insights into other situations where friction is important.

Continue reading “Friction Is Key in Domino Physics” »

Jun 12, 2022

Pink Noise as a Probe of Quantum Transport

Posted by in categories: nanotechnology, particle physics, quantum physics

View insights.

0 post reach.


Noise in an electronic circuit is a nuisance that can scramble information or reduce a detector’s sensitivity. But noise also offers a way to learn about the microscopic quantum mechanisms at play in a material or device. By measuring a circuit’s “shot noise,” a form of white noise, researchers have previously shed light on conduction in quantum Hall and spintronic systems, for instance. Now, a collaboration led by Oren Tal at the Weizmann Institute of Science, Israel, and by Dvira Segal at the University of Toronto, Canada, has shown that an easier-to-measure form of noise, called “flicker noise,” can also be a powerful probe of quantum effects [1].

Continue reading “Pink Noise as a Probe of Quantum Transport” »

Jun 12, 2022

New Class of Atom Cooled to Near Absolute Zero

Posted by in categories: chemistry, particle physics, quantum physics

Researchers have cooled indium atoms to a temperature close to 1 mK, making indium the first group-III atom to be made ultracold.

At temperatures near to absolute zero, atoms move slower than a three-toed sloth, allowing physicists to gain unprecedented experimental control over these systems. New phases of matter can form when atoms become ultracold and quirky quantum properties can emerge, yet much of the periodic table remains unexplored in the ultracold regime. Now, Travis Nicholson of the National University of Singapore and colleagues have successfully cooled indium to close to 1 mK [1]. Indium is the first “main group-III” atom—a specific group of transition metals on the periodic table—to be cooled to such a low temperature. The demonstration opens the door to studying systems with properties previously unexplored by ultracold physicists.

For their experiments, Nicholson and colleagues used a magneto-optical trap—a standard tool for trapping and cooling atoms. But because this was the first attempt at making indium atoms ultracold, the team had to make their own version of the apparatus rather than using one designed to cool other atoms. “The systems used for this research are highly customized to specific atoms,” Nicholson says. So every part of the setup from designing the laser systems to picking the screws had to be “hashed out by us.” With their custom setup, the group loaded 500,000,000 indium atoms into the trap using a laser beam and then cooled them.

Jun 12, 2022

Ben Goertzel — Open Ended vs Closed Minded Conceptions of Superintelligence

Posted by in categories: information science, robotics/AI, singularity

Abstract: Superintelligence, the next phase beyond today’s narrow AI and tomorrow’s AGI, almost intrinsically evades our attempts at detailed comprehension. Yet very different perspectives on superintelligence exist today and have concrete influence on thinking about matters ranging from AGI architectures to technology regulation.
One paradigm considers superintelligences as resembling modern deep reinforcement learning systems, obsessively concerned with optimizing particular goal functions. Another considers superintelligences as open-ended, complex evolving systems, ongoingly balancing drives.
toward individuation and radical self-transcendence in a paraconsistent way. In this talk I will argue that the open-ended conception of superintelligence is both more desirable and more realistic, and will discuss how concrete work being done today on projects like OpenCog Hyperon, SingularityNET and Hypercycle potentially paves the way for a path through beneficial decentralized integrative AGI and on to open-ended superintelligence and ultimately the Singularity.

Bio: In May 2007, Goertzel spoke at a Google tech talk about his approach to creating artificial general intelligence. He defines intelligence as the ability to detect patterns in the world and in the agent itself, measurable in terms of emergent behavior of “achieving complex goals in complex environments”. A “baby-like” artificial intelligence is initialized, then trained as an agent in a simulated or virtual world such as Second Life to produce a more powerful intelligence. Knowledge is represented in a network whose nodes and links carry probabilistic truth values as well as “attention values”, with the attention values resembling the weights in a neural network. Several algorithms operate on this network, the central one being a combination of a probabilistic inference engine and a custom version of evolutionary programming.

Continue reading “Ben Goertzel — Open Ended vs Closed Minded Conceptions of Superintelligence” »

Jun 12, 2022

Tesla Model Y with new 4680 cells shows impressive potential for faster charging

Posted by in categories: energy, sustainability, transportation

Early experiences with the new Tesla Model Y with 4,680 cells and a structural battery pack are showing some impressive potential for faster charging and better energy density.

When Tesla delivered its first made-in-Texas Model Y vehicles, we noted that it was strange that Tesla didn’t reveal any details – like specs and pricing – about the new version of the electric SUV.

Continue reading “Tesla Model Y with new 4680 cells shows impressive potential for faster charging” »

Jun 12, 2022

AI robot painter holds an exhibition and her art is really cool

Posted by in categories: nuclear energy, robotics/AI

The way she uses dots and strokes looks a bit like ones and zeroes.


Artificial intelligence is playing a huge role in the development of all kinds of technologies. It can be combined with deep learning techniques to do amazing things that have the potential to improve all our lives. Things like learning how to safely control nuclear fusion (opens in new tab), or making delicious pizzas (opens in new tab).

Continue reading “AI robot painter holds an exhibition and her art is really cool” »

Jun 12, 2022

This is probably the most intense water slide ever made! ⚛ 😎

Posted by in category: futurism

Jun 12, 2022

Did Scientists Recreate a Tyrannosaurus Rex Embryo from Chicken DNA?

Posted by in category: biotech/medical

Circa 2016


Reports that scientists have created “the first fully living dinosaur embryo in millions of years” using DNA from chicken skin are fake news.

Jun 12, 2022

This machine folds your laundry for you

Posted by in category: futurism

Read more

Jun 12, 2022

A new battery design could last for an entire 100 years

Posted by in categories: sustainability, transportation

Tesla’s battery research arm based in Canada published a paper earlier this month that provides details of a battery design that could serve us for 100 years, Electrek reported.

As the world looks to reduce carbon emissions, electric transportation is one of the ways that is being touted to achieve emission targets that countries have set themselves. To ensure this can be sustainable, countries need to switch to renewable sources of power, while electric vehicle makers need to ensure that the cars themselves do not become a cause of concern.