Toggle light / dark theme

Laser plasma acceleration is a potentially disruptive technology: It could be used to build far more compact accelerators and open up new use cases in fundamental research, industry and health. However, on the path to real-world applications, some properties of the plasma-driven electron beam as delivered by current prototype accelerators still need to be refined.

DESY’s LUX experiment has now made significant progress in this direction: Using a clever correction system, a research team was able to significantly improve the quality of electron bunches accelerated by a laser plasma accelerator. This brings the technology a step closer to concrete applications, such as a plasma-based injector for a synchrotron storage ring. The research group presents their results in the journal Nature.

Conventional electron accelerators use which are directed into so-called resonator cavities. The radio waves transfer energy to the electrons as they fly past, increasing their velocity. To achieve high energies, many resonators have to be connected in series, making the machines large and costly.

In the Quantum Mixtures Lab of the National Institute of Optics (Cnr-Ino), a team of researchers from Cnr, the University of Florence and the European Laboratory for Non-linear Spectroscopy (LENS) observed the phenomenon of capillary instability in an unconventional liquid: an ultradilute quantum gas. This result has important implications for the understanding and manipulation of new forms of matter.

The research, published in Physical Review Letters, also involved researchers from the Universities of Bologna, Padua, and the Basque Country (UPV/EHU).

In physics, it is known that the surface tension of a liquid, caused by intermolecular cohesive forces, tends to minimize the surface area. This mechanism is responsible for macroscopic phenomena such as the formation of raindrops or soap bubbles.

As you read this sentence, trillions of cells are moving around in your body. From the red blood cells being pumped by your heart, to the immune cells racing across your lymphatic system, everything you need to live pulsates and flows in a turbulent dance of finely tuned biological machinery.

Because its are so unique, understanding the of flowing biological cells like these has been an important topic of research. New insights can lead to the development of better microfluidic devices that study disease, and even improve the function of artificial hearts. However, live tracking and observing flowing cells as it moves across the body is still a challenge.

Now, utilizing , researchers from Japan have succeeded in recreating the fluid dynamics of flowing cells. In their paper, published in the Journal of Fluid Mechanics, the team created an in-silico cell model—a simulation of biological cells—by programming them as deformable “capsules,” and placed them in a simulated tube under a pulsating “flow,” mimicking how cells travel through a vessel.

A new study shows that electron spins—tiny magnetic properties of atoms that can store information—can be protected from decohering (losing their quantum state) much more effectively than previously thought, simply by applying low magnetic fields.

Normally, these spins quickly lose coherence when they interact with other particles or absorb certain types of light, which limits their usefulness in technologies like or atomic clocks. But the researchers discovered that even interactions that directly relax or disrupt the spin can be significantly suppressed using weak magnetic fields.

This finding expands our understanding of how to control and opens new possibilities for developing more stable and precise quantum devices.

The same unique structure that makes plastic so versatile also makes it susceptible to breaking down into harmful micro- and nanoscale particles. The world is saturated with trillions of microscopic and nanoscopic plastic particles, some smaller than a virus, making them small enough to interfere

In a groundbreaking experiment, physicists observed a classic liquid phenomenon—capillary instability—in a quantum gas for the first time. By cooling a mix of potassium and rubidium atoms near absolute zero, researchers created tiny self-bound droplets that behave like liquid despite remaining in

Scientists have identified tricellulin loss as the root cause of dry mouth in Sjögren’s syndrome, and successfully reversed it in lab models. A major breakthrough has identified the loss of a crucial “gatekeeper” protein as the underlying cause of dry mouth in Sjögren’s syndrome, a discovery that

Scientists from the KATRIN experiment have achieved the most precise upper limit ever recorded for the mass of the mysterious neutrino – clocking in at less than 0.45 electron volts.

This breakthrough not only tightens the constraints on one of the universe’s most elusive particles but also challenges and extends the boundaries of the Standard Model of physics.

Breaking new ground in neutrino mass measurement.

When doing tasks that require little attention, people who let their minds wander show brain activity similar to sleep. This sleep-like activity has been linked to improved performance. When people let their minds wander during tasks that require focus and active thinking, their learning and perf