The probability distributions of turbulent flows can, in fact, be simulated using quantum-inspired tensor networks.
To store ever more data in electronic devices of the same size, the manufacturing processes for these devices need to be studied in greater detail. By investigating new approaches to making digital memory at the atomic scale, researchers engaged in a public-private partnership are aiming to address the endless demand for denser data storage.
One such effort has focused on developing the ideal manufacturing process for a type of digital memory known as 3D NAND flash memory, which stacks data vertically to increase storage density.
The narrow, deep holes required for this type of memory can be etched twice as fast with the right plasma and other key ingredients, according to a study published in the Journal of Vacuum Science & Technology A.
It is one of the most important laws of nature that we know: The famous second law of thermodynamics says that the world gets more and more disordered when random chance is at play. Or, to put it more precisely: that entropy must increase in every closed system.
Ordered structures lose their order, regular ice crystals turn into water, porcelain vases are broken up into shards. At first glance, however, quantum physics does not really seem to adhere to this rule: Mathematically speaking, entropy in quantum systems always remains the same.
A research team at TU Wien has now taken a closer look at this apparent contradiction and has been able to show that it depends on what kind of entropy you look at. If you define the concept of entropy in a way that is compatible with the basic ideas of quantum physics, then there is no longer any contradiction between quantum physics and thermodynamics.
New research found that individuals with anorexia nervosa have elevated opioid neurotransmitter.
A neurotransmitter is a chemical substance that transmits signals across a synapse from one neuron to another in the nervous system. These chemicals play a crucial role in the functioning of the brain and body, influencing everything from mood, sleep, and learning to heart rate, anxiety, and fear. Common neurotransmitters include dopamine, serotonin, acetylcholine, and norepinephrine. They bind to specific receptors on the surface of neurons, triggering various physiological responses and allowing for the communication that underpins all neural activities. Imbalances in neurotransmitter levels can lead to neurological disorders or mental health issues, making them a central focus of study in both medicine and psychology.
However, a new study proves that hydrogen bonds can effectively link spin centers, enabling easier assembly of molecular spin qubits. This discovery could transform quantum material development by leveraging supramolecular chemistry.
A Light-Driven Approach to Spin Qubits
Qubits are the fundamental units of information in quantum technology. A key challenge in developing practical quantum applications is determining what materials these qubits should be made of. Molecular spin qubits are particularly promising for molecular spintronics, especially in quantum sensing. In these systems, light can stimulate certain materials, creating a second spin center and triggering a light-induced quartet state.
A study by cognitive neuroscientists at SISSA investigated how the human brain processes space and time, uncovering that these two types of information are only partially connected.
Imagine a swarm of fireflies flickering in the night. How does the human brain process and integrate information about both their duration and spatial position to form a coherent visual experience? This question was the focus of research by Valeria Centanino, Gianfranco Fortunato, and Domenica Bueti from SISSA’s Cognitive Neuroscience group, published in Nature Communications
<em> Nature Communications </em> is an open-access, peer-reviewed journal that publishes high-quality research from all areas of the natural sciences, including physics, chemistry, Earth sciences, and biology. The journal is part of the Nature Publishing Group and was launched in 2010. “Nature Communications” aims to facilitate the rapid dissemination of important research findings and to foster multidisciplinary collaboration and communication among scientists.
How can the latest technology, such as solar cells, be improved? An international research team led by the University of Göttingen is helping to find answers to questions like this with a new technique. For the first time, the formation of tiny, difficult-to-detect particles—known as dark excitons—can be tracked precisely in time and space. These invisible carriers of energy will play a key role in future solar cells, LEDs and detectors. The results are published in Nature Photonics.
Dark excitons are tiny pairs made up of one electron together with the hole it leaves behind when it is excited. They carry energy but cannot emit light (hence the name “dark”). One way to visualize an exciton is to imagine a balloon (representing the electron) that flies away and leaves behind an empty space (the hole) to which it remains connected by a force known as a Coulomb interaction. Researchers talk about “particle states” that are difficult to detect but are particularly important in atomically thin, two-dimensional structures in special semiconductor compounds.
In an earlier publication, the research group led by Professor Stefan Mathias from the Faculty of Physics at the University of Göttingen was able to show how these dark excitons are created in an unimaginably short time and describe their dynamics with the help of quantum mechanical theory.
The experience of awe may be fleeting, but its impact on brain function has lasting psychological benefits. Here’s how to start cultivating it in your daily life.
Superionic materials are a class of materials that simultaneously present properties that are characteristic of solids and liquids. Essentially, a set of ions in these materials exhibits liquid-like mobility, even if the materials’ underlying atomic structure maintains a solid-like order.
Due to their unique ionic conductivity patterns, superionic materials could be promising for developing solid-state batteries. These are batteries that contain electrolytes based on solid materials instead of liquid electrolytes.
While various past studies have explored the potential of superionic materials as solid-state electrolytes, the physics underpinning their rapid ionic diffusion is not yet fully understood. Specifically, it is unclear whether this property results from liquid-like motion in the material or from the conventional lattice phonons (i.e., atom vibrations) in the material.