Toggle light / dark theme

A 69-year-old man with metastatic prostate adenocarcinoma, treated with chemotherapy 3 years ago, presented with pancytopenia (white blood cells, 3.1 × 109/L; hemoglobin, 11.1 g/L; platelets, 47 × 109/L). A bone marrow aspirate revealed increased blasts with folded nuclei, deeply basophilic cytoplasm, prominent nucleoli, perinuclear hofs, and occasional salmon-colored cytoplasmic granules without Auer rods (panel A, Giemsa stain, original magnification ×1000, lens objective 100×). The blasts were positive for CD34, CD13, CD19, CD25 (partial), CD33, CD38 (decreased), CD45 (dim), CD64 (partial), CD79a (dim), CD117, CD123, HLA-DR (bright), and myeloperoxidase and negative for CD7, CD10, CD14, CD20, CD22, CD36, CD56, cytoplasmic IgM and terminal deoxynucleotidyl transferase (panel B). Next-generation sequencing detected a DNMT3A mutation (F794del, variant allelic frequency 2%), likely representing bystander clonal hematopoiesis. Cytogenetic analysis revealed an abnormal karyotype (46,XY,+1,der(1;15)(q10;q10), t(16;21)(q24;q22)[20]) (panel C). Result of dual-color fusion fluorescence in situ hybridization (FISH) was negative for RUNX1::RUNX1T1. Nevertheless, 23% of the cells exhibited 3 copies of RUNX1, suggesting RUNX1 rearrangement with another partner (panel D); RUNX1 rearrangement was confirmed by FISH using a break-apart probe (panel E). Optical genome mapping confirmed the presence of RUNX1::CBFA2T3 (panel F). Acute myeloid leukemia (AML) with RUNX1::CBFA2T3 is a rare AML with characteristic morphologic and immunophenotypic features that overlap with AML with RUNX1::RUNX1T1. This case highlights the morphologic and immunophenotypic similarities between these AML subtypes and raises awareness of this rare entity.


Wei J. Wang, Sanam Loghavi; Acute myeloid leukemia with RUNX1:: CBFA2T3 fusion. Blood 2025; 145 (11): 1226. doi: https://doi.org/10.1182/blood.2024027698

Download citation file:

Over the course of their lives, humans and other animals typically learn to avoid situations and stimuli that are dangerous or are perceived as threatening. Past neuroscience studies have gathered evidence suggesting that the medial prefrontal cortex (mPFC), a brain region that plays a key role in learning and decision-making, also contributes to these learned threat responses.

Researchers at the University of California Los Angeles (UCLA) recently carried out a study aimed at better understanding how the gradual strengthening of neural connections during the brain’s development influences changes in the threat responses of mice.

Their findings, published in Nature Neuroscience, revealed that there are critical transitions during that alter how the mPFC interacts with the nucleus accumbens (NAc) and basolateral amygdala (BLA), two brain regions involved in threat-based and emotional learning.

Recent advances in the field of materials science have opened new possibilities for the fabrication of bioelectronics, devices designed to be worn or implanted in the human body. Bioelectronics can help to track or support the function of organs, tissues and cells, which can contribute to the prevention and treatment of various diseases.

A promising material for the fabrication of bioelectronics is PEDOT: PSS, a polymer known for its , flexibility and compatibility with biological tissues. Despite its advantageous properties, PEDOT: PSS is known to gradually dissolve in biological fluids, a limitation that has so far been counteracted using chemical compounds and processes.

Researchers at Stanford University, the University of Cambridge and Rice University recently uncovered an easier and potentially safer strategy to stabilize this bio-compatible polymer using heat. Their proposed thermal treatment, outlined in the journal Advanced Materials, was found to make PEDOT: PSS films stable in water without the need for any chemical additives.

A team of researchers from the University of Ottawa has made significant strides in understanding the ionization of atoms and molecules, a fundamental process in physics that has implications for various fields including X-ray generation and plasma physics.

The research, titled “Orbital angular momentum control of strong-field in atoms and molecules,” is published in Nature Communications.

Think about atoms—the building blocks of everything around us. Sometimes, they lose their electrons and become charged particles (that’s ionization). It happens in lightning, in plasma TVs, and even in the . Until now, scientists thought they could only control this process in limited ways.

Astrophysicists have once again enriched our knowledge of the cosmos with a new discovery: two small planets orbiting TOI-1453. Located at around 250 light years from Earth in the Draco constellation, this star is part of a binary system (a pair of stars orbiting each other) and is slightly cooler and smaller than our sun. This discovery, published in the journal Astronomy & Astrophysics, paves the way for future atmospheric studies to better understand these types of planets.

Around this star are two planets, a super-Earth and a sub-Neptune. These are types of planets that are absent from our own solar system, but paradoxically constitute the most common classes of planet in the Milky Way. This discovery sheds light on a planetary configuration that could provide valuable clues to the formation and evolution of planets.

Using data from NASA’s Transiting Exoplanet Survey Satellite (TESS) and the HARPS-N high-resolution spectrograph, the researchers were able to identify TOI-1453 b and TOI-1453 c, the two exoplanets orbiting TOI-1453.

Temperature is a critical variable that influences countless biological processes at the cellular level. However, precisely measuring temperatures within living cells remains challenging. Conventional temperature measurement techniques often lack the spatial resolution needed to detect subtle temperature variations in complex microscopic environments. Additionally, many existing molecular thermometers have significant limitations in terms of their sensitivity, resolution, and applicable targets, highlighting the need for innovative approaches and versatile tools.

Against this backdrop, a research team led by Associate Professor Gen-ichi Konishi from the Institute of Science Tokyo, Japan, has developed a molecular thermometer using a novel solvatochromic fluorescent dye. Their findings, published online in the Journal of the American Chemical Society on March 5, 2025, demonstrate that this new compound enables high-precision temperature measurements through changes in fluorescence properties.

The researchers designed a series of donor−π–acceptor (D−π–A) fluorophores based on a π-extended fluorene structure. These molecules are specially engineered to change their fluorescence properties in response to their surrounding environment’s polarity. When the temperature increases, the polarity of the solvent slightly decreases, which causes these dyes to emit light at different wavelengths and intensities.

Biomolecular condensates are shifting blobs in our cells that organize cellular matter. They are distinct molecular communities made of DNA, RNA and proteins that “condense” molecules to key locations, yet they frequently defy description. Partly this is because they are so small, they cannot be measured using traditional microscopes.

“These blobs were once described as being ‘liquid-like’ because some of them were observed to kiss, fuse, drip and flow like raindrops on windshields,” said Rohit Pappu, Gene K. Beare Distinguished Professor of biomedical engineering the McKelvey School of Engineering at Washington University in St. Louis.

However, while the blobs may look like raindrops, computations have suggested otherwise. The molecular organization within condensates is more like that of a network that rearranges on different timescales, giving condensates more of a shifting, silly putty-like character.

A research team led by Prof. Gao Xiaoming from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences has improved residual neural networks to accurately classify and identify microplastics using low-quality Raman spectra, even under non-ideal experimental conditions.

“It detects and classifies microplastics when the data is cluttered with noise,” said Prof. Gao, “and it does this without overloading computing power.”

The research results are published in Talanta.

Guiding light around dynamic regions of a scattering object by means of propagating light through the most ‘stable’ channel within a moving scattering medium is demonstrated, potentially advancing fields such as deep imaging in living biological tissue and optical communications through turbulent air and underwater.

Magnetic materials have become indispensable to various technologies that support our modern society, such as data storage devices, electric motors, and magnetic sensors.

High-magnetization ferromagnets are especially important for the development of next-generation spintronics, sensors, and high-density data storage technologies. Among these materials, the iron-cobalt (Fe-Co) alloy is widely used due to its strong magnetic properties. However, there is a limit to how much their performance can be improved, necessitating a new approach.

Some earlier studies have shown that epitaxially grown films made up of Fe-Co alloys doped with heavier elements exhibit remarkably high magnetization. Moreover, recent advances in computational techniques, such as the integration of machine learning with ab initio calculations, have significantly accelerated the search for new material compositions.