Toggle light / dark theme

A crew of astronauts have become the first-ever people to orbit over Earth’s north and south poles and they have done so with an incredible view thanks to the cupola installed on their spacecraft.

The Fram2 mission launched onboard a SpaceX Crew Dragon Resilience spacecraft that has a cupola module allowing the astronauts a 360-degree view of space and Earth. The glass dome is 2,000 square inches making it the largest single window ever flown to space. The window occupies the same space as the docking port meaning if it rendezvous with the International Space Station then the cupola won’t be equipped.

SpaceX shared a video (below) taken from the space window showing the Arctic polar region as well as the Antarctic polar region.

Commuters in downtown Barcelona have been able to ride the bus for free this week. There’s just one catch: this mini-bus has no one at the wheel.

The bus pulls away from the stop with its passengers on its own, brakes before changing lanes and eases down one of Barcelona’s most fashionable boulevards.

Renault is testing a new driverless mini-bus in Barcelona this week. The autonomous vehicle is running on a 2.2-km (1.3-mile) circular route with four stops in the center of the Spanish city. Adventurous commuters can jump on free of charge.

The messy breakup of a liquid droplet that occurs when it hits a surface can be suppressed by giving the droplet an electrical charge.

Liquid droplets hit solid surfaces in a range of technological processes, such as spray coating and inkjet printing. Typically, the collision causes the droplet to break up into many tiny fragments, creating a splash. A research team has now shown that electrical charging of droplets can reduce or even entirely suppress the splashing, offering greater control over the impact process [1]. The findings could be useful in the design of more precise and efficient droplet-related technologies.

Electrical charging of droplets is very common both in nature and in technology, for example, in thundercloud electrification. The charging usually results from contact electrification, where friction, or even mere contact, between two surfaces results in electrons or ions passing between them. The effect can be exploited technologically: For example, mechanical engineer Zuankai Wang, now at the Hong Kong Polytechnic University, and his colleagues have previously shown that the charge on falling water droplets can be harnessed for electricity generation [2].

Network models provide a flexible way of representing objects and their multifaceted relationships. Deriving a network entails mapping hidden structures in inevitably noisy data—a critical task known as reconstruction. Now Gang Yan and Jia-Jie Qin of Tongji University in China have provided a mathematical proof showing what makes some networks easier to reconstruct than others [1].

Complex systems in biology, physics, and social sciences tend to involve a vast number of interacting entities. In a network model, these entities are represented by nodes, linked by connections weighted to describe the strength of each interaction. Yan and Qin took an empirical dataset and used a statistical inference method to calculate the likelihood that any pair of nodes is directly linked. Then, based on the true positive and false positive rates of these inferred connections, they analyzed the fidelity of the reconstructed networks. They found that the most faithful reconstructions are obtained with systems for which the number of connections per node varies most widely across the network. Yan and Qin saw the same tendency when they tested their model on synthetic and real networks, including metabolic networks, plant-pollinator webs, and power grids.

With the rapid increase in available data across research areas, network reconstruction has become an important tool for studying complex systems. Yan and Qin say their new result both solves the problem of what complex systems can be easily mapped into a network and provides a solid foundation for developing methods of doing so.