Toggle light / dark theme

AI systems already work their magic in many areas of biomedical science, helping to solve protein structure, discover hidden patterns in the genome and process massive amounts of biological data. Now, an AI-assisted technology developed at the Weizmann Institute of Science and published in Nature Biotechnology may grant researchers and physicians an unprecedented means of peering deep into the body’s tissues by making it possible to simultaneously view more proteins than ever before, in a tissue sample.

“To understand how any particular tissue works, it’s crucial to measure lots of its proteins at the same time,” says Dr. Leeat Keren of Weizmann’s Molecular Cell Biology Department, who headed the research team. “This gives us an idea of which cells are present in the tissue and how they communicate and interact with one another.”

Keren explains that this knowledge is vital to the study of disease processes. Cancerous growths, for example, contain, in addition to , various other cell types, including healthy cells of the tissue the tumor is growing on and of the immune system. The cellular makeup of the tumor and how those cell types interact with one another can determine the effectiveness of therapies or be used to predict which patients have a better prognosis and which are likely to develop metastases. Such findings, in turn, can lead to improved personalized treatments.

Unlike conventional silicon-based solar cells, perovskite solar cells (PSCs) are not only thin and lightweight, but can also be seamlessly applied to curved surfaces, like building facades and vehicle roofs. What’s more, they can be easily manufactured at room temperature using a solution process, leading to significantly reduced production costs.

However, for PSCs to achieve commercialization, it is crucial to develop technologies that maintain high efficiency over extended periods. A research team affiliated with UNIST has successfully made strides in this area. Their work is published in the journal Joule.

Professor Sang Il Seok of the School of Energy and Chemical Engineering at UNIST, along with researchers Jongbeom Kim and Jaewang Park, has developed an interlayer that leverages the specificity of organic cations on the surface of PSCs, simultaneously achieving and durability.

The word “abated” is the focus of much debate in the context of carbon dioxide emissions. World leaders have this year been underlining their commitment to phase out the use of unabated fossil fuels: that is, where emissions from their combustion are not mitigated through offsets or carbon capture technologies.

The final text of the COP28 statement called for “abatement, and removal technologies, such as carbon capture and utilisation and storage, particularly in hard-to-abate sectors.” Meanwhile the G7 group of nations last year called for “a global effort to accelerate the phase-out of unabated fossil fuels to achieve net zero in energy systems by 2050.” Such commitments are important in the race to decarbonize traditional energy sources, but they raise an important question: How exactly should we define “abated” emissions?

Currently, there is no widespread agreement on the answer, specifically on how much carbon dioxide should be removed for emissions to be classed as “abated”. Some scientists argue this lack of definition risks hampering decarbonization efforts. “The term ‘unabated’, if left unchecked and poorly defined, could leave the interpretation of the commitment wide open,” said a 2023 working paper by a group of scientists at Columbia University cited by Reuters.

An international research team coordinated at KIT (Karlsruhe Institute of Technology) has developed mechanical metamaterials with a high elastic energy density. Highly twisted rods that deform helically provide these metamaterials with a high stiffness and enable them to absorb and release large amounts of elastic energy. The researchers conducted simple compression experiments to confirm the initial theoretical results. Their findings have been published in the journal Nature.

Storage of mechanical energy is required for many technologies, including springs for absorbing energy, buffers for mechanical energy storage, or flexible structures in robotics or energy-efficient machines. Kinetic energy, i.e., motion energy or the corresponding mechanical work, is converted into elastic energy in such a way that it can be fully released again when required.

The key characteristic here is enthalpy—the energy density that can be stored in and recovered from an element of the material. Peter Gumbsch, Professor for at KIT’s Institute for Applied Materials (IAM), explains that achieving the highest possible enthalpy is challenging: “The difficulty is to combine conflicting properties: high stiffness, and large recoverable strain.”

The Investor Relations website contains information about Eli Lilly and Company’s business for stockholders, potential investors, and financial analysts.

Chronic kidney disease (CKD) populations face an elevated risk of cardiovascular disease (CVD), yet many remain undertreated with statins for primary prevention of CVD despite meeting eligibility criteria. We examined trends in statin use for primary prevention among individuals with CKD before and after the release of the 2013 Kidney Disease: Improving Global Outcomes (KDIGO) guideline recommending statin use for lipid management in selected adults with CKD.

What happens when technology eliminates scarcity? As our real-world tech oligarchs promise a utopian future with AI reshaping society, we’ll examine what we’re truly sacrificing at the altar of progress.

✉️ Free AI Resources: https://mindfulmachines.ai/
🤙Connect One-on-One: https://mindfulmachines.ai/call.

References.

The Orville: Future Unknown (2022)
https://orville.fandom.com/wiki/Future_Unknown.

The Ones Who Walk Away from Omelas (1973)
https://www.goodreads.com/book/show/92625.The_Ones_Who_Walk_Away_from_Omelas.

The Ones Who Stay and Fight (2018)

Androgenic alopecia (AGA) affects both men and women worldwide. New blood vessel formation can restore blood supply and stimulate the hair regrowth cycle. Recently, our group reported that 2-deoxy-D-ribose (2dDR) is 80%–90% as effective as VEGF in the stimulation of neovascularization in in vitro models and in a chick bioassay. In this study, we aimed to assess the effect of 2dDR on hair growth. We prepared an alginate gel containing 2dDR, polypropylene glycol, and phenoxyethanol. AGA was developed in C57BL6 mice by intraperitoneally injecting testosterone (TE). A dihydrotestosterone (DHT)-treated group was used as a negative control, a minoxidil group was used as a positive control, and we included groups treated with 2dDR gel and a combination of 2dDR and minoxidil. Each treatment was applied for 20 days. Both groups treated with 2dDR gel and minoxidil stimulated the morphogenesis of hair follicles. H&E-stained skin sections of C57BL/6 mice demonstrated an increase in length, diameter, hair follicle density, anagen/telogen ratio, diameter of hair follicles, area of the hair bulb covered in melanin, and an increase in the number of blood vessels. Masson’s trichrome staining showed an increase in the area of the hair bulb covered in melanin. The effects of the FDA-approved drug (minoxidil) on hair growth were similar to those of 2dDR (80%–90%). No significant benefit were observed by applying a combination of minoxidil with 2dDR. We conclude that 2dDR gel has potential for the treatment of androgenic alopecia and possibly other alopecia conditions where stimulation of hair regrowth is desirable, such as after chemotherapy. The mechanism of activity of 2dDR remains to be established.

Alopecia can occur due to hormonal imbalance, thyroid problems, certain medications, and autoimmune diseases. It can be induced by blood thinning medications, contraceptives, antidepressants, steroidal anti-inflammatory drugs, beta and calcium-channel blockers, retinoids, and chemotherapeutics (Vicky et al., 2018). Male pattern baldness, also known as androgenic alopecia (AGA), is one of the most widespread hair loss conditions in the world (Yohei et al., 2018). In the pathophysiology of AGA, testosterone is converted to dihydrotestosterone (DHT) by 5α-reductase. DHT then binds to androgen receptors in the dermal papilla cells (DPCs) of sensitive hair follicles and prolongs the telogen phase, causing hair loss before the growth of new hair (Izabela et al., 2014). AGA is said to affect 30% of Asian men by age 30 and 50% by age 50 (Yohei et al., 2018). It also affects 80% of White men and 40% of White women by age 70 (Pietro et al., 2019).