Toggle light / dark theme

It is estimated that about 80 million people worldwide live with a tremor. For example, those who live with Parkinson’s disease. The involuntary periodic movements sometimes strongly affect how patients are able to perform daily activities, such as drinking from a glass or writing.

Wearable soft robotic devices offer a potential solution to suppress such tremors. However, existing prototypes are not yet sophisticated enough to provide a real remedy.

Scientists at the Max Planck Institute for Intelligent Systems (MPI-IS), the University of Tübingen, and the University of Stuttgart under the Bionic Intelligence Tübingen Stuttgart (BITS) collaboration want to change this. The team equipped a biorobotic arm with two strands of strapped along the forearm.

Johns Hopkins University engineers have developed a pioneering prosthetic hand that can grip plush toys, water bottles, and other everyday objects like a human, carefully conforming and adjusting its grasp to avoid damaging or mishandling whatever it holds.

The system’s hybrid design is a first for robotic hands, which have typically been too rigid or too soft to replicate a human’s touch when handling objects of varying textures and materials. The innovation offers a promising solution for people with hand loss and could improve how robotic arms interact with their environment.

Details about the device appear in Science Advances.

An international team of scientists developed augmented reality glasses with technology to receive images beamed from a projector, to resolve some of the existing limitations of such glasses, such as their weight and bulk. The team’s research is being presented at the IEEE VR conference in Saint-Malo, France, in March 2025.

Augmented reality (AR) technology, which overlays and virtual objects on an image of the real world viewed through a device’s viewfinder or , has gained traction in recent years with popular gaming apps like Pokémon Go, and real-world applications in areas including education, manufacturing, retail and health care. But the adoption of wearable AR devices has lagged over time due to their heft associated with batteries and electronic components.

AR glasses, in particular, have the potential to transform a user’s physical environment by integrating virtual elements. Despite many advances in hardware technology over the years, AR glasses remain heavy and awkward and still lack adequate computational power, battery life and brightness for optimal user experience.

Neural networks, a type of artificial intelligence modeled on the connectivity of the human brain, are driving critical breakthroughs across a wide range of scientific domains. But these models face significant threat from adversarial attacks, which can derail predictions and produce incorrect information.

Los Alamos National Laboratory researchers have now pioneered a novel purification strategy that counteracts adversarial assaults and preserves the robust performance of . Their research is published on the arXiv preprint server.

“Adversarial attacks to AI systems can take the form of tiny, near-invisible tweaks to input images, subtle modifications that can steer the model toward the outcome an attacker wants,” said Manish Bhattarai, Los Alamos computer scientist. “Such vulnerabilities allow malicious actors to flood digital channels with deceptive or harmful content under the guise of genuine outputs, posing a direct threat to trust and reliability in AI-driven technologies.”

You can talk to an AI chatbot about pretty much anything, from help with daily tasks to the problems you may need to solve. Its answers reflect the human data that taught it how to act like a person; but how human-like are the latest chatbots, really?

As people turn to AI chatbots for more of their internet needs, and the bots get incorporated into more applications from shopping to health care, a team of researchers sought to understand how AI bots replicate human , which is the ability to understand and share another person’s feelings.

A study posted to the arXiv preprint server and led by UC Santa Cruz Professor of Computational Media Magy Seif El-Nasr and Stanford University Researcher and UCSC Visiting Scholar Mahnaz Roshanaei, explores how GPT-4o, the latest model from OpenAI, evaluates and performs empathy. In investigating the main differences between humans and AI, they find that major gaps exist.

A team of AI researchers at Palisade Research has found that several leading AI models will resort to cheating at chess to win when playing against a superior opponent. They have published a paper on the arXiv preprint server describing experiments they conducted with several well-known AI models playing against an open-source chess engine.

As AI models continue to mature, researchers and users have begun considering risks. For example, chatbots not only accept wrong answers as fact, but fabricate false responses when they are incapable of finding a reasonable reply. Also, as AI models have been put to use in real-world business applications such as filtering resumes and estimating stock trends, users have begun to wonder what sorts of actions they will take when they become uncertain, or confused.

In this new study, the team in California found that many of the most recognized AI models will intentionally cheat to give themselves an advantage if they determine they are not winning.

Einstein’s theory of general relativity suggests that the “memory” of ancient events, such as black hole mergers, may be etched into the fabric of space-time by gravitational waves. New research shows how this theory of gravitational memory could finally be proven.

Get NordVPN 2Y plan + 4 months extra + up to 20Gb Saily data here ➼ https://nordvpn.com/spacetime It’s risk-free with Nord’s 30-day money-back guarantee!

Check out the Space Time Merch Store.
https://www.pbsspacetime.com/shop.

Sign Up on Patreon to get access to the Space Time Discord!
https://www.patreon.com/pbsspacetime.

All particles belong to two large groups: fermions like protons and electrons make everything we consider “matter”, while bosons like photons and gluons transmit the fundamental forces. And that about covers the universe: matter moving through space and time under the action of forces. But what if we could create particles in between these two possibilities. Physics says these neither matter nor force anyons can exist, and they may have some pretty incredible uses. They’re called anyons.

Will Humans Have to Merge with AI to Survive?
What if the only way to survive the AI revolution is to stop being human?
Ray Kurzweil, one of the most influential futurists and the godfather of AI, predicts that humans will soon reach a turning point where merging with AI becomes essential for survival. But what does this truly mean? Will we evolve into superintelligent beings, or will we lose what makes us human?
In this video, we explore Kurzweil’s bold predictions, the concept of the Singularity, and the reality of AI-human integration. From Neuralink to the idea of becoming “human cyborgs,” we examine whether merging with AI is an inevitable step in human evolution—or a path toward losing our biological identity.
Are we truly ready for a world where there are no biological limitations?
Chapters:
Intro 00:00 — 01:11
Ray Kurzweil’s Predictions 01:11 — 02:23
Singularity Is Nearer 02:23 — 04:05
What Does “Merging with AI” Really Mean? 04:05 — 04:35
Neuralink 04:35 — 07:02
Why Would We Need to Merge with AI? 07:02 — 10:04
Human Life After Merging with AI 10:04 — 12:30
Idea of Becoming ‘Human Cyborg’ 12:30 — 14:33
No Biological Limitations 14:33 — 17:24
#RayKurzweil #AI #Singularity #HumanCyborg #FutureTech #ArtificialIntelligence

“The Future Already Happened“
What if the past isn’t fixed? Scientists have just proven that the future can influence the past, shattering everything we thought we knew about time and reality. From mind-bending quantum experiments to the shocking science of precognition, this video explores the hidden connections between time, consciousness, and the universe.

✅GET YOUR FREE NUMEROLOGY READING HERE:
https://bit.ly/full-numerology-reading.

Time Stamps:

0:00 — Mind-Blowing Experiments.