Toggle light / dark theme

Discover how Caltech’s groundbreaking research on ultrathin light sails is revolutionizing space travel. This video explains the innovative design, precise measurements, and surprising discoveries that are paving the way for interstellar propulsion. Dive into the science behind using laser-driven membranes to propel spacecraft and learn why this breakthrough is a game-changer for future space exploration.

Paper link: https://www.nature.com/articles/s4156… 00:00 Introduction 00:57 Experimental Innovations in Lightsail Design 03:56 Precision Measurement of Radiation Pressure 07:37 Future Directions, Implications, and a Relevant Discovery 11:06 Outro 11:16 Enjoy MUSIC TITLE: Starlight Harmonies MUSIC LINK: https://pixabay.com/music/pulses-star… Visit our website for up-to-the-minute updates: www.nasaspacenews.com Follow us Facebook: / nasaspacenews Twitter: / spacenewsnasa Join this channel to get access to these perks: / @nasaspacenewsagency #NSN #NASA #Astronomy#InterstellarLightsail #Caltech #SpaceExploration #BreakthroughStarshot #LaserPropulsion #Nanotechnology #SpaceTech #InterstellarTravel #LightsailDesign #Physics #Astrophysics #SpaceInnovation #RocketScience #FutureTech #LaserSail #PhotonPropulsion #SciTech #SpaceResearch #Astronomy #Innovation #ScienceNews #Interstellar #SpaceMission #LabResearch #Nanofabrication #EdgeScattering #RadiationPressure #Metamaterials #SpaceExplorationNews #NextGenTech.

Chapters:
00:00 Introduction.
00:57 Experimental Innovations in Lightsail Design.
03:56 Precision Measurement of Radiation Pressure.
07:37 Future Directions, Implications, and a Relevant Discovery.
11:06 Outro.
11:16 Enjoy.

MUSIC TITLE: Starlight Harmonies.

A recent study led by quantum researchers at the Department of Energy’s Oak Ridge National Laboratory proved popular among the science community interested in building a more reliable quantum network.

The study, led by ORNL’s Hsuan-Hao Lu, details development of a novel quantum gate that operates between two photonic degrees of freedom—polarization and frequency. (Photonic degrees of freedom describe different properties of a photon that can be controlled and used to store or transmit information.) When combined with hyperentanglement, this new approach could enhance error resilience in , helping to pave the way for future quantum networks.

Their work was published in the journal Optica Quantum.

Quantum spin liquids (QSLs) are fascinating and mysterious states of matter that have intrigued scientists for decades. First proposed by Nobel laureate Philip Anderson in the 1970s, these materials break the conventional rules of magnetism by never settling into a stable magnetic state, even at temperatures close to absolute zero.

Instead, the spins of the atoms within them remain constantly fluctuating and entangled, creating a kind of magnetic “liquid.” This unusual behavior is driven by a phenomenon called magnetic frustration, where competing forces prevent the system from reaching a single, ordered configuration.

QSLs are notoriously difficult to study. Unlike ordinary magnetic materials, they don’t show the usual signs of magnetic transitions, which makes it hard to detect and understand them using traditional techniques. As a result, their behavior has remained an elusive puzzle for researchers.

DNA-nanoparticle motors are exactly as they sound: tiny artificial motors that use the structures of DNA and RNA to propel motion through enzymatic RNA degradation. Essentially, chemical energy is converted into mechanical motion by biasing the Brownian motion.

The DNA-nanoparticle motor uses the “burnt-bridge” Brownian ratchet mechanism. In this type of movement, the motor is propelled by the degradation (or “burning”) of the bonds (or “bridges”) it crosses along the substrate, essentially biasing its motion forward.

These nano-sized motors are highly programmable and can be designed for use in molecular computation, diagnostics, and transport.

Tags; #science #neuroscience #happiness #happiness #neurodegenerativediseases #disease #health #mentalhealth #sleep #neuroscientist #disease #education #success.
******************
About me:
I am Shambhu Yadav, Ph.D., a research scientist at Harvard Medical School (Boston, MA, USA). I also work (for fun) as a Science Journalist, editor, and presenter on a YouTube channel. Science Communication is my passion.

***********************************************************
Disclaimer 1: The video content is for educational and informational purposes only, not a substitute for professional medical advice, diagnosis, or treatment. Always consult your physician or qualified healthcare provider regarding any medical condition. Do not disregard or delay seeking professional medical advice based on information from this video. Any reliance on the information provided is at your own risk.
Disclaimer 2: The Diary Of A Scientist (DOAS) channel does not promote or encourage any unusual activities, and all content provided by this channel is meant for EDUCATIONAL purposes only.

*Credits and thanks**
The video was recorded using iPhone and edited using Adobe Premiere Pro: a timeline-based and non-linear video editing software.
Music source: Epidemic sound.

I shared this already. Here it is from Cell reversing diabetes type 1 with stem cells, reducing need for insulin shots.


Chemically induced stem-cell-derived islets were transplanted beneath the abdominal anterior rectus sheath in one patient with type 1 diabetes, resulting in tolerable safety and promising restoration of exogenous-insulin-independent glycemic control at 1-year follow-up.

Colorectal cancer (CRC) is a serious public health concern worldwide. Immune checkpoint inhibition medication is likely to remain a crucial part of CRC clinical management. This study aims to create new super paramagnetic iron oxide nano-carrier (SPION) that can effectively transport miRNA to specific CRC cell lines. In addition, evaluate the efficiency of this nano-formulation as a therapeutic candidate for CRC. Bioinformatics tools were used to select a promising tumor suppressor miRNA (mir-497-5p). Green route, using Fusarium oxyporium fungal species, manipulated for the synthesis of SPION@Ag@Cs nanocomposite as a carrier of miR-497-5p. That specifically targets the suppression of PD1/PDL1 and CTLA4pathways for colorectal therapy. UV/visible and FTIR spectroscopy, Zeta potential and MTT were used to confirm the allocation of the miR-497 on SPION@Ag@Cs and its cytotoxicity against CRC cell lines. Immunofluorescence was employed to confirm transfection of cells with miR-497@NPs, and the down-regulation of CTLA4 in HT29, and Caco2 cell lines. On the other hand, PDL1 showed a significant increase in colorectal cell lines (HT-29 and Caco-2) in response to mir497-5p@Nano treatment. The data suggest that the mir-497-loaded SPION@Ag@Cs nano-formulation could be a good candidate for the suppression of CTLA4in CRC human cell lines. Consequently, the targeting miR-497/CTLA4 axis is a potential immunotherapy treatment strategy for CRC.


Elfiky, A.M., Eid, M.M., El-Manawaty, M. et al. Sci Rep 15, 4,247 (2025). https://doi.org/10.1038/s41598-025-88165-3

Download citation.

A series of experiments on board China’s space station have for the first time produced oxygen and the ingredients for rocket fuel – key steps that are considered essential for human survival and the future exploration of space.

The Shenzhou-19 crew aboard the Tiangong space station successfully conducted the world’s first in-orbit demonstration of artificial photosynthesis technology, producing oxygen, as well as the ingredients necessary for rocket fuel, paving the way for long-term space exploration, including a crewed moon landing before 2030.


Shenzhou-19 astronauts simulate natural photosynthesis, bringing long-haul crewed missions a step closer to reality.

Cardiomyocytes can be implanted to remuscularize the failing heart1,2,3,4,5,6,7. Challenges include sufficient cardiomyocyte retention for a sustainable therapeutic impact without intolerable side effects, such as arrhythmia and tumour growth. We investigated the hypothesis that epicardial engineered heart muscle (EHM) allografts from induced pluripotent stem cell-derived cardiomyocytes and stromal cells structurally and functionally remuscularize the chronically failing heart without limiting side effects in rhesus macaques. After confirmation of in vitro and in vivo (nude rat model) equivalence of the newly developed rhesus macaque EHM model with a previously established Good Manufacturing Practice-compatible human EHM formulation8, long-term retention (up to 6 months) and dose-dependent enhancement of the target heart wall by EHM grafts constructed from 40 to 200 million cardiomyocytes/stromal cells were demonstrated in macaques with and without myocardial infarction-induced heart failure. In the heart failure model, evidence for EHM allograft-enhanced target heart wall contractility and ejection fraction, which are measures for local and global heart support, was obtained. Histopathological and gadolinium-based perfusion magnetic resonance imaging analyses confirmed cell retention and functional vascularization. Arrhythmia and tumour growth were not observed. The obtained feasibility, safety and efficacy data provided the pivotal underpinnings for the approval of a first-in-human clinical trial on tissue-engineered heart repair. Our clinical data confirmed remuscularization by EHM implantation in a patient with advanced heart failure.


Epicardial engineered heart muscle allografts from induced pluripotent stem cell-derived cardiomyocytes can safely and effectively remuscularize chronically failing hearts in rhesus macaques, leading to improved cardiac function and paving the way for human clinical trials.

The ideal material for interfacing electronics with living tissue is soft, stretchable, and just as water-loving as the tissue itself—in short, a hydrogel. Semiconductors, the key materials for bioelectronics such as pacemakers, biosensors, and drug delivery devices, on the other hand, are rigid, brittle, and water-hating, impossible to dissolve in the way hydrogels have traditionally been built.

A paper published today in Science from the UChicago Pritzker School of Molecular Engineering (PME) has solved this challenge that has long stymied researchers, reimagining the process of creating hydrogels to build a powerful semiconductor in hydrogel form. Led by Asst. Prof. Sihong Wang’s research group, the result is a bluish gel that flutters like a sea jelly in water but retains the immense semiconductive ability needed to transmit information between living tissue and machine.


New material from the UChicago Pritzker School of Molecular Engineering can create better brain-machine interfaces, biosensors, and pacemakers.