Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

The Day My Smart Vacuum Turned Against Me

Would you allow a stranger to drive a camera-equipped computer around your living room? You might have already done so without even realizing it.

It all started innocently enough. I had recently bought an iLife A11 smart vacuum—a sleek, affordable, and technologically advanced robot promising effortless cleaning and intelligent navigation. As a curious engineer, I was fascinated by its workings. After leaving it to operate for the entire year, my curiosity got the better of me.

I’m a bit paranoid—the good kind of paranoid. So, I decided to monitor its network traffic, as I would with any so-called smart device.

Combining two brain scans uncovers hidden clues to future teen anxiety

When you’re a teenager, it’s easy to feel like the world is watching your every mistake. For some kids, that sense of self‐consciousness fades as they grow up. For others, it deepens into full‐blown anxiety.

A new study led by researchers at the USC Dornsife College of Letters, Arts and Sciences may help explain why—and could eventually make it easier to spot teens most at risk before anxiety takes hold.

The research, published in JAMA Network Open, found that combining two kinds of brain scans can better predict which teens are likely to experience greater anxiety as they get older. The work sheds new light on how the responds to mistakes and why those responses vary from person to person.

Scientists Discover Exercise Literally Rewires Your Body at the Molecular Level

Exercise reprograms molecular pathways in the body, offering new clues for future disease prevention and treatment. For years, it has been well established that regular exercise builds strength, improves cardiovascular health, and boosts mood. Now, new research reveals that its benefits go even d

Jeremy Barton | A Path to Atomically Precise Manufacturing @ Paths to Progress

Jeremy Barton and Nanotechnology.


*This video was recorded at ‘Paths to Progress’ at LabWeek hosted by Protocol Labs & Foresight Institute.*

Protocol Labs and Foresight Institute are excited to invite you to apply to a 5-day mini workshop series to celebrate LabWeek, PL’s decentralized conference to further public goods. The theme of the series, Paths to Progress, is aimed at (re)-igniting long overdue progress in longevity bio, molecular nanotechnology, neurotechnology, crypto & AI, and space through emerging decentralized, open, and technology-enabled funding mechanisms.

*This mini-workshop is focused on Paths to Progress in Molecular Nanotechnology*
Molecular manufacturing, in its most ambitious incarnation, would use programmable tools to bring together molecules to make precisely bonded components in order to build larger structures from the ground up. This would enable general-purpose manufacturing of new materials and machines, at a fraction of current waste and price. We are currently nowhere near this ambitious goal. However, recent progress in sub-fields such as DNA nanotechnology, protein-engineering, STM, and AFM provide possible building blocks for the construction of a v1 of molecular manufacturing; the molecular 3D printer. Let’s explore the state of the art and what type of innovation mechanisms could bridge the valley of death: how might we update the original Nanotech roadmap; is a tech tree enough? how might we fund the highly interdisciplinary progress needed to succeed: FRO vs. DAO?

*About The Foresight Institute*

How San Francisco became Waymo-pilled

Shifted from slightly against to strongly in favor. 2023: half oppose, 2025: only 29 oppose. People fear new technology… until it is no longer new.

Expect this to happen with things like cell ag (lab grown meat), nanobots, and the like. Most people are not ideologically oppose to them, they just want enough time for them to prove themselves as safe.

“Opposition to autonomous vehicles is on the decline, the poll showed: In 2023, more than 50% of voters opposed driverless cars; now, it’s 29%.”

And:

“Two-thirds of voters said they support allowing fully autonomous vehicles to operate in San Francisco. It’s a significant increase from 2023, when fewer than half agreed with the sentiment.”

(https://sfstandard.com/2025/10/08/san-francisco-became-waymo-pilled/)


Microtubule-Stabilizer Epothilone B Delays Anesthetic-Induced Unconsciousness in Rats

Suggests microtubules play an important role in consciousness. Answer probably lies within them. I really hope for the possibility of what some call “mind uploading” or transfer of consciousness to a stronger medium like artificial neurons made out of better materials. But first, we must get a far better understanding of why consciousness exist. These kinds of experiments are a pre-requisite to that.

Study: Sana Khan, Yixiang Huang, Derin Timuçin, Shantelle Bailey, Sophia Lee, Jessica Lopes, Emeline Gaunce, Jasmine Mosberger, Michelle Zhan, Bothina Abdelrahman, Xiran Zeng and Michael C. Wiest.


Volatile anesthetics reversibly abolish consciousness or motility in animals, plants, and single-celled organisms (Kelz and Mashour, 2019; Yokawa et al., 2019). For humans, they are a medical miracle that we have been benefiting from for over 150 years, but the precise molecular mechanisms by which these molecules reversibly abolish consciousness remain elusive (Eger et al., 2008; Hemmings et al., 2019; Kelz and Mashour, 2019; Mashour, 2024). The functionally relevant molecular targets for causing unconsciousness are believed to be one or a combination of neural ion channels, receptors, mitochondria, synaptic proteins, and cytoskeletal proteins.

The Meyer–Overton correlation refers to the venerable finding that the anesthetic potency of chemically diverse anesthetic molecules is directly correlated with their solubility in lipids akin to olive oil (S. R. Hameroff, 2018; Kelz and Mashour, 2019). The possibility that general anesthesia might be explained by unitary action of all (or most) anesthetics on one target protein is supported by the Meyer–Overton correlation and the additivity of potencies of different anesthetics (Eger et al., 2008). Together these results suggest that anesthetics may act on a unitary site, via relatively nonspecific physical interactions (such as London/van der Waals forces between induced dipoles).

Cytoskeletal microtubules (MTs) have been considered as a candidate target of anesthetic action for over 50 years (Allison and Nunn, 1968; S. Hameroff, 1998). Other membrane receptor and ion channel proteins were ruled out as possible unitary targets by exhaustive studies culminating in Eger et al. (2008). However, MTs (composed of tubulin subunits) were not ruled out and remain a candidate for a unitary site of anesthetic action. MTs are the major components of the cytoskeleton in all cells, and they also play an essential role in cell reproduction—and aberrant cell reproduction in cancer—but in neurons, they have additional specialized roles in intracellular transport and neural plasticity (Kapitein and Hoogenraad, 2015). MTs have also been proposed to process information, encode memory, and mediate consciousness (S. R. Hameroff et al., 1982; S. Hameroff and Penrose, 1996; S. Hameroff, 2022). While classical models predict no direct role of MTs in neuronal membrane and synaptic signaling, Singh et al. (2021a) showed that MT activities do regulate axonal firing, for example, overriding membrane potentials. The orchestrated objective reduction (Orch OR) theory proposes that anesthesia directly blocks quantum effects in MTs necessary for consciousness (S. Hameroff and Penrose, 2014). Consistent with this hypothesis, volatile anesthetics do bind to cytoskeletal MTs (Pan et al., 2008) and dampen their quantum optical effects (Kalra et al., 2023), potentially contributing to causing unconsciousness.

/* */