Toggle light / dark theme

City College of New York physicist Pouyan Ghaemi and his research team are claiming significant progress in using quantum computers to study and predict how the state of a large number of interacting quantum particles evolves over time. This was done by developing a quantum algorithm that they run on an IBM quantum computer. “To the best of our knowledge, such particular quantum algorithm which can simulate how interacting quantum particles evolve over time has not been implemented before,” said Ghaemi, associate professor in CCNY’s Division of Science.

Entitled “Probing geometric excitations of fractional quantum Hall states on quantum computers,” the study appears in the journal of Physical Review Letters.

“Quantum mechanics is known to be the underlying mechanism governing the properties of elementary particles such as electrons,” said Ghaemi. “But unfortunately there is no easy way to use equations of quantum mechanics when we want to study the properties of large number of electrons that are also exerting force on each other due to their .”

New research shows a direct interaction between dark matter particles and those that make up ordinary matter.

A new paper, published in the *Astronomy and Astrophysics* journal, discovered unexpected characteristics for the elusive dark matter that likely goes against our best theory of the universe — the Lambda-Cold Dark Matter model.

What is dark matter?

We’re only days into James Webb’s scientific operations, and the giant infrared observatory has already broken its own record for the most distant galaxy ever observed.

Last week, a team unearthed an observation of a galaxy that existed 400 million years after the Big Bang. This week, a new analysis revealed a galaxy a mere 235 million years after the Big Bang. It is located 35 billion light-years away from Earth.

James Webb peers further into the universe than ever before

Circa 2015


New software being developed at MIT is proving able to autonomously repair software bugs by borrowing from other programs and across different programming languages, without requiring access to the source code. This could save developers thousands of hours of programming time and lead to much more stable software.

Bugs are the bane of the software developer’s life. The changes that must be made to fix them are often trivial, typically involving changing only a few lines of code, but the process of identifying exactly which lines need to be fixed can be a very time-consuming and often very frustrating process, particularly in larger projects.

But now, new software from MIT could take care of this, and more. The system, dubbed CodePhage, can fix bugs which have to do with variable checks, and could soon be expanded to fix many more types of mistakes. Remarkably, according to MIT researcher Stelios Sidiroglou-Douskos, the software can do this kind of dynamic code translation and transplant (dubbed “horizontal code transplant,” from the analogous process in genetics) without needing access to the source code and across different programming languages, by analyzing the executable file directly.

New York (AP) — Buzz Aldrin’s jacket worn on his historic first mission to the moon’s surface in 1969 has been auctioned off to a bidder for nearly $2.8 million.

The $2,772,500 paid for the Apollo 11 Inflight Coverall Jacket is the highest for any American space-flown artifact sold at auction, according to Sotheby’s, which handled the sale. The unidentified winning bidder, who participated by phone, outlasted several others in a bidding that spanned almost 10 minutes.