Toggle light / dark theme

View insights.


The James Webb Space Telescope (JWST) has taken a picture of one of the strangest galaxies in the universe. The details of the Cartwheel galaxy are obscured by dust, which has made studying it difficult, but the new images from JWST peer through to reveal this weird galaxy in more detail than ever before.

The Cartwheel galaxy is about 500 million light years away and measures about 150,000 light years across. Researchers believe that it was most likely a spiral galaxy similar to the Milky Way before one of its companion galaxies blasted through it like a bullet through a target, sending waves of stars and gas rippling out from the galaxy’s centre and creating the nested ring shapes that we see today.

View insights.


Transfusing young mice with blood from older rodents quickly triggers ageing, suggesting that cellular ageing isn’t just a case of wear and tear.

There is a longstanding hypothesis that surgically connecting an old mouse with a young rodent causes a transfer of blood that de-ages the older animal. While this benefits the older mouse, the effects on the young donor rodent were less clear.

To learn more, Irina Conboy at the University of California, Berkeley, and her colleagues transfused blood between young and old mice. Those aged 3 months got blood from animals that were approaching 2 years old.

In a world where 3D printing is being applied to everything from houses to rockets to guns 0, the question comes up as to where manufacturing might be headed next.

A new device, called LeviPrint, adds a unique feature to the manufacturing process: acoustic levitation. By trapping small objects in high frequency sound waves, LeviPrint can be used to build a variety of different structures without touching any of the pieces.

In a video released by researchers from Spain’s Universidad Publica de Navarra, or UPNA, LeviPrint can be seen building a variety of different things, including a bridge, a hoop made out of liquid glue droplets and a cat’s ears.

In its heyday, UIUC’s Blue Waters was one of the world’s top supercomputers. Anyone who was curious could drop by its 30,000-square-foot machine room for a tour, and spend half an hour strolling among the 288 huge black cabinets, supported by a 24-megawatt power supply, that housed its hundreds of thousands of computational cores.

Blue Waters is gone, but today UIUC is home to not just one, but tens of thousands of vastly superior computers. Although these wondrous machines put Blue Waters to shame, each one weighs just three pounds, can be fueled by coffee and sandwiches, and is only the size of its owner’s two hands curled together. We all carry them between our ears.

The fact is that humanity is far from having artificial computers that can match the capabilities of the human , outside a narrow range of well-defined tasks. Will we ever capture the brain’s magic? To help answer that question, MRL’s Axel Hoffmann recently led the writing of an APL Materials “Perspectives” article that summarizes and reflects on efforts to find so-called “quantum materials” that can mimic .

Helium ion beam (HIB) technology plays an important role in the extreme fields of nanofabrication. Due to high resolution and sensitivity, HIB nanofabrication technology is widely used to pattern nanostructures into components, devices, or systems in integrated circuits, materials sciences, nano-optics, and bio-sciences applications. HIB-based nanofabrication includes direct-write milling, ion beam-induced deposition, and direct-write lithography without the need to resist assistance. Their nanoscale applications have also been evaluated in the areas of integrated circuits, materials sciences, nano-optics, and biological sciences.

In a new paper published in the International Journal of Extreme Manufacturing, a team of researchers, led by Dr. Deqiang Wang from Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, PR China, have summarized comprehensively the extreme processes and applications of HIB .

The main aim of this review is to address the latest developments in HIB with their extreme processing capabilities and widespread applications in nanofabrication. Based on the introduction of the HIM system with GFIS, the performance characteristics and advantages of HIB technology have been discussed first. Thereafter, certain questions about the extreme processes and applications of HIB nanofabrication have been addressed: How many extreme processes and applications of HIB technology have been developed in nanofabrication for integrated circuits, materials sciences, nano-optics, and bio-sciences applications? What are the main challenges in the extreme nanofabrication with HIB technology for high resolution and sensitivity applications?

3D micro-/nanofabrication holds the key to building a large variety of micro-/nanoscale materials, structures, devices, and systems with unique properties that do not manifest in their 2-D planar counterparts. Recently, scientists have explored some very different 3D fabrication strategies such as kirigami and origami that make use of the science of cutting and folding 2-D materials/structures to create versatile 3D shapes. Such new methodologies enable continuous and direct 2-D-to-3D transformations through folding, bending and twisting, with which the occupied space can vary “nonlinearly” by several orders of magnitude compared to the conventional 3D fabrications. More importantly, these new-concept kirigami/origami techniques provide an extra degree of freedom in creating unprecedented 3D micro-/nanogeometries beyond the imaginable designs of conventional subtractive and additive fabrication.

In a new paper published in Light: Science & Applications, Chinese scientists from Beijing Institute of Technology and South China University of Technology made a comprehensive review on some of the latest progress in kirigami/origami in micro-/nanoscale. Aiming to unfold this new regime of advanced 3D micro-/nanofabrication, they introduced and discussed various stimuli of kirigami/origami, including capillary force, residual stress, mechanical stress, responsive force and focused-ion-beam irradiation induced stress, and their working principles in the micro-/nanoscale region. The focused-ion-beam based nano-kirigami, as a prominent example coined in 2018 by the team, was highlighted particularly as an instant and direct 2-D-to-3D transformation technique. In this method, the focused ion beam was employed to cut the 2-D nanopatterns like “knives/scissors” and gradually “pull” the nanopatterns into complex 3D shapes like “hands”.