If a machine makes art, is it even art? And what does this mean for actual artists?
By studying how electric organs arose in different lineages of fish, scientists gain new insights into a long-standing question of evolutionary biology.
Astronomers have reconstructed the history of star formation at the center of the Milky Way for the first time, finding that starbirth radiated outwards from the galaxy’s heart.
The results also revealed that most young stars in the densely packed galactic center formed with only loose associations and drifted further apart over the course of millions of years.
New data from Qatalag and GitLab puts a number on it: Knowledge workers waste an extra 67 minutes online each day doing menial tasks for the express purpose of proving to their managers and colleagues that they’re available and working.
It’s taking a strain. The survey polled 2,000 knowledge workers and found that more than half of them (54%) reported feeling pressure to show their online status by replying to emails and Slack messages, adding comments to Google Docs, or updating project management tools.
It’s a new twist in the developing saga of remote work, and it shows that escaping the culture of presenteeism isn’t as simple as escaping the (physical) office.
Motor skills learning is classically associated with brain regions including cerebral and cerebellar cortices and basal ganglia nuclei. Less is known about the role of the hippocampus in the acquisition and storage of motor skills. Here, we show that mice receiving a long-term training in the accelerating rotarod display marked hippocampal transcriptional changes and reduced pyramidal neurons activity in the CA1 region when compared with naive mice. Then, we use mice in which neural ensembles are permanently labeled in an Egr1 activity-dependent fashion. Using these mice, we identify a subpopulation of Egr1-expressing pyramidal neurons in CA1 activated in short-term (STT) and long-term (LTT) trained mice in the rotarod task. When Egr1 is downregulated in the CA1 or these neuronal ensembles are depleted, motor learning is improved whereas their chemogenetic stimulation impairs motor learning performance. Thus, Egr1 organizes specific CA1 neuronal ensembles during the accelerating rotarod task that limit motor learning. These evidences highlight the role of the hippocampus in the control of this type of learning and we provide a possible underlying mechanism.
SIGNIFICANCE STATEMENT It is a major topic in neurosciences the deciphering of the specific circuits underlying memory systems during the encoding of new information. However, the potential role of the hippocampus in the control of motor learning and the underlying mechanisms has been poorly addressed. In the present work we show how the hippocampus responds to motor learning and how the Egr1 molecule is one of the major responsible for such phenomenon controlling the rate of motor coordination performances.
O.o!!!!!
Changing the number of chromosomes an animal has can take millions of generations to happen in nature through the course of evolution – and now, scientists have been able to make these same changes in lab mice in a relative blink of an eye.
The new technique using stem cells and gene editing is a major accomplishment, and one that the team is hoping will reveal more about how the rearrangement of chromosomes can influence the way that animals evolve over time.
It’s in chromosomes – those strings of protein and DNA inside cells – that we find our genes, inherited from our parents and blended together to make us who we are.
Orbiting around 420 kilometers (261 miles) above our heads, the astronauts of the Internation Space Station (ISS) get a view of Earth like no other. Sometimes, it’s spectacular auroras, other times it’s something more… curious.
European Space Agency (ESA) astronaut Samantha Cristoforetti – no stranger to having a bit of fun in space – took to Twitter yesterday to share what she called an “intriguing sight”, a bright dot apparently shining in the Negev desert in southern Israel. Related StoriesAfter 175 Years, Two False Conjectures, And The Birth Of Computing, This Theorem Finally Has A ProofExperiment To Find Elusive “Chameleon” Fifth Force Suggests It Doesn’t Actually ExistPerseverance Samples Hold Key To Understanding Water-Rich Martian Past.
Mathematical models suggest that with just a few more genes, it might be possible to define hundreds of cellular identities, more than enough to populate the tissues of complex organisms. It’s a finding that opens the door to experiments that could bring us closer to understanding how, eons ago, the system that builds us was built.
The Limits of Mutual Repression
Developmental biologists have illuminated many tipping points and chemical signals that prompt cells to follow one developmental pathway or another by studying natural cells. But researchers in the field of synthetic biology often take another approach, explained Michael Elowitz, a professor of biology and bioengineering at Caltech and an author of the new paper: They build a system of cell-fate control from scratch to see what it can tell us about what such systems require.
In 2021, scientists published a feasibility study about erecting solar panels over canals, and it’s about to become a reality.