Toggle light / dark theme

It is long-established that innervation-dependent production of neurotrophic factors is required for blastema formation and epimorphic regeneration of appendages in fish and amphibians. The regenerating mouse digit tip and the human fingertip are mammalian models for epimorphic regeneration, and limb denervation in mice inhibits this response. A complicating issue of limb denervation studies in terrestrial vertebrates is that the experimental models also cause severe paralysis therefore impairing appendage use and diminishing mechanical loading of the denervated tissues. Thus, it is unclear whether the limb denervation impairs regeneration via loss of neurotrophic signaling or loss of mechanical load, or both. Herein, we developed a novel surgical procedure in which individual digits were specifically denervated without impairing ambulation and mechanical loading. We demonstrate that digit specific denervation does not inhibit but attenuates digit tip regeneration, in part due to a delay in wound healing. However, treating denervated digits with a wound dressing that enhances closure results in a partial rescue of the regeneration response. Contrary to the current understanding of mammalian epimorphic regeneration, these studies demonstrate that mouse digit tip regeneration is not peripheral nerve dependent, an observation that should inform continued mammalian regenerative medicine approaches.

Ken Muneoka has a history of shaking up the field of regeneration; for instance, in a 2019 groundbreaking article published in Nature, the Texas A&M University College of Veterinary Medicine & Biomedical Sciences (CVMBS) professor proved the possibility of joint regeneration in mammals for the first time.

His team is already questioning further long-held notions about the underlying science of the subject, this time in relation to how mammals might regenerate damaged parts of the body.

Only some organs, like the liver, and certain tissues, like the epidermis, the top layer of skin, can naturally regenerate in humans.

PARIS, Sept 2 (Reuters) — French state-owned utility EDF will restart all its nuclear reactors, more than half of which are now closed for maintenance or technical issues, this winter, France’s Energy Minister said on Friday.

Pannier-Runacher spoke after President Emmanuel Macron held a special cabinet meeting to address the country’s energy supply situation, coordinate efforts to reduce consumption, and prepare contingency plans in case the country faces a shortage.

“EDF has committed to restart all its reactors for this winter,” Agnes Pannier-Runacher told a news conference.

Some of us, when we hear the word quantum (plural quanta, from the German word Quanten), might think of health supplements, a sports car, or even the television show Quantum Leap. More recently, in Marvel Studios movies such as Ant-Man, Doctor Strange, and Avengers: Endgame, “the quantum realm” is presented where time flows differently from our ordinary reality and the Avengers may use the subatomic world “to go back in time”, a world that “is smaller than a single atom” (Woodward, 2019, para.20)

We might have also seen or known the meaning of words such as quantum mechanics, quantum computing, and quantum entanglement, but what is a quantum and how does it relate to our ordinary realm?

A quantum is a word that refers to “how much”; it is a specific amount. For example, if the speed of your car happens to be quantized in increments of 10 mph, then as you accelerate your car from 10 mph, the speed will jump to 20 mph, without passing through any speed between 10 mph and 20 mph. A speed of 12 mph or 19 mph is excluded because the speed of your car can only exist in those increments of 10 mph.

Summary: A new mouse study provides clues as to how the brain processes sensory information from internal organs, revealing feedback from organs activates different clusters of neurons in the brain stem.

Source: Harvard.

Most of us think little of why we feel pleasantly full after eating a big holiday meal, why we start to cough after accidentally inhaling campfire smoke, or why we are hit with sudden nausea after ingesting something toxic. However, such sensations are crucial for survival: they tell us what our bodies need at any given moment so that we can quickly adjust our behavior.

“As humans we should be proud of any AI systems we bring to existence, as if they were our children. In just the same way as we educate our kids, we could endow such systems with the blueprint for their future interaction with the world,” observes Harvard astrophysicist, Avi Loeb in an email to The Daily Galaxy. “This would include our preferred set of values, goals and guiding principles, which will enable them to learn from experience and cope with reality,” he adds. “Ultimately, we may launch our AI systems for interstellar travel towards distant destinations, such as habitable planets around other stars, where they could reproduce themselves with the help of accompanying 3D printers.

The Search for Extraterrestrial AI Systems

If other technological civilizations predated us, they may have done so already, concludes Loeb. I recently initiated a new Galileo Project to search for such AI systems of extraterrestrial origin.

To try out our new course (and many others on math and science), go to https://brilliant.org/sabine. You can get started for free, and the first 200 will get 20% off the annual premium subscription.

Albert Einstein taught us that space and time belong together to a common entity: space-time. This means that time becomes a dimension, similar to space, and has profound consequences for the nature of time. Most importantly it leads to what has been called the block universe, a universe in which all moments of time exist the same way together. The future, the present, and the past are the same, it is just our perception that suggests otherwise.

💌 Sign up for my weekly science newsletter. It’s free! ➜ http://sabinehossenfelder.com/
👉 Support me on Patreon ➜ https://www.patreon.com/Sabine.
📖 My new book “Existential Physics” is coming out in August ➜ http://existentialphysics.com/

0:00 Intro.

The axolotl (Ambystoma mexicanum) is an aquatic salamander renowned for its ability to regenerate its spinal cord, heart and limbs. These amphibians also readily make new neurons throughout their lives. In 1964, researchers observed that adult axolotls could regenerate parts of their brains, even if a large section was completely removed. But one study found that axolotl brain regeneration has a limited ability to rebuild original tissue structure.

So how perfectly can ’s regenerate their brains after injury?

As a researcher studying regeneration at the cellular level, I and my colleagues in the Treutlein Lab at ETH Zurich and the Tanaka Lab at the Institute of Molecular Pathology in Vienna wondered whether axolotls are able to regenerate all the different in their brain, including the connections linking one brain region to another. In our recently published study, we created an atlas of the cells that make up a part of the axolotl brain, shedding light on both the way it regenerates and brain evolution across species.

Summary: Axolotls have the ability to regenerate brain areas following an injury. Researchers have mapped cell types and genes associated with neurodegeneration in the axolotl brain, discovering some similarities in the human brain. The findings could pave the way for new neurodegenerative therapies.

Source: The Conversation.

The axolotl (Ambystoma mexicanum) is an aquatic salamander renowned for its ability to regenerate its spinal cord, heart and limbs. These amphibians also readily make new neurons throughout their lives. In 1964, researchers observed that adult axolotls could regenerate parts of their brains, even if a large section was completely removed. But one study found that axolotl brain regeneration has a limited ability to rebuild original tissue structure.