Toggle light / dark theme

Quantum computing and communication often rely on the entanglement of several photons together. But obtaining these multiphoton states is a bit like playing the lottery, as generating entanglement between photons only succeeds a small fraction of the time. A new experiment shows how to improve one’s odds in this quantum game of chance. The method works like an entanglement assembly line, in which entangled pairs of photons are created in successive order and combined with stored photons.

The traditional method for obtaining multiphoton entanglement requires a large set of photon sources. Each source simultaneously generates an entangled photon pair, and those photons are subsequently interfered with each other. The process is probabilistic in that each step only succeeds in producing pair entanglement, say, once in every 20 tries. The odds become exponentially worse as entanglement of more and more photons is attempted.

Christine Silberhorn from Paderborn University, Germany, and her colleagues have developed a new method that offers a relatively high success rate [1]. They use a single source that generates pairs of polarization-entangled photons in succession. After the first pair is created, one of these photons is stored in an optical loop. When the source creates a new pair (which can take several tries), one of these photons is interfered with the stored photon. If successful, this interference creates a four-photon entangled state. The process can continue—with new pairs being generated and one photon being stored—until the desired multiphoton state is reached.

The rise of quantum computing and its implications for current encryption standards are well known. But why exactly should quantum computers be especially adept at breaking encryption? The answer is a nifty bit of mathematical juggling called Shor’s algorithm. The question that still leaves is: What is it that this algorithm does that causes quantum computers to be so much better at cracking encryption? In this video, YouTuber minutephysics explains it in his traditional whiteboard cartoon style.

“Quantum computation has the potential to make it super, super easy to access encrypted data — like having a lightsaber you can use to cut through any lock or barrier, no matter how strong,” minutephysics says. “Shor’s algorithm is that lightsaber.”

According to the video, Shor’s algorithm works off the understanding that for any pair of numbers, eventually multiplying one of them by itself will reach a factor of the other number plus or minus 1. Thus you take a guess at the first number and factor it out, adding and subtracting 1, until you arrive at the second number. That would unlock the encryption (specifically RSA here, but it works on some other types) because we would then have both factors.

Three scientists who laid the groundwork for the understanding of the odd “entangling” behavior of quantum particles have received the 2022 Nobel Prize in Physics.

French physicist Alain Aspect, Austria’s Anton Zeilinger and American John Clauser were honored for their experiments exploring the nature of entangled quantum particles.

This article was originally published at The Conversation. (opens in new tab) The publication contributed the article to Space.com’s Expert Voices: Op-Ed & Insights.

A glowing blob known as “the cocoon,” which appears to be inside one of the enormous gamma-ray emanations from the center of our galaxy dubbed the “Fermi bubbles,” has puzzled astronomers since it was discovered in 2012.

Accurate detection and manipulation of endogenous proteins is essential to understand cell biological processes, which motivated laboratories across cell biology to develop highly efficient CRISPR genome editing methods for endogenous epitope tagging (Auer et al., 2014; Nakade et al., 2014; Lackner et al., 2015; Schmid-Burgk et al., 2016; Suzuki et al., 2016; Nishiyama et al., 2017; Artegiani et al., 2020; Danner et al., 2021). Multiplex editing using NHEJ-based CRISPR/Cas9 methods remains limited because of the high degree of cross talk that occurs between two knock-in loci (Gao et al., 2019; Willems et al., 2020). In the current study we present CAKE, a mechanism to diminish cross talk between NHEJ-based CRISPR/Cas9 knock-ins using sequential activation of gRNA expression. We demonstrate that this mechanism strongly reduces cross talk between knock-in loci, and results in dual knock-ins for a wide variety of genes. Finally, we showed that CAKE can be directly applied to reveal new biological insights. CAKE allowed us to perform two-color super-resolution microscopy and acute manipulation of the dynamics of endogenous proteins in neurons, together revealing new insights in the nanoscale organization of synaptic proteins.

The CAKE mechanism presented here creates a mosaic of CreON and CreOFF knock-ins, and the number of double knock-in cells depends on the efficacy of each knock-in vector. Therefore, to obtain a high number of double knock-in cells, the efficacy of both the CreON and CreOFF knock-in vector must be optimized. We identified three parameters that regulate the efficacy for single and double knock-ins in neurons. First, the efficacy of gRNAs varies widely, and even gRNAs that target sequences a few base pairs apart in the same locus can have dramatically different knock-in rates (Willems et al., 2020; Danner et al., 2021; Fang et al., 2021; Zhong et al., 2021). Thus, the efficacy of each individual gRNA must be optimized to increase the chance of successful multiplex labeling in neurons. gRNA performance is dependent on many factors, including the rate of DNA cleavage and repair (Rose et al., 2017; Liu et al., 2020; Park et al.

PASADENA, Calif. (Reuters)-Fast-food French fries and onion rings are going high-tech, thanks to a company in Southern California.

Miso Robotics Inc in Pasadena has started rolling out its Flippy 2 robot, which automates the process of deep frying potatoes, onions and other foods.

A big robotic arm like those in auto plants — directed by cameras and artificial intelligence — takes frozen French fries and other foods out of a freezer, dips them into hot oil, then deposits the ready-to-serve product into a tray.

Chipmaker Micron Technology revealed on Tuesday ambitious plans to develop a $100-billion computer chip factory complex in upstate New York, in a bid to boost domestic chip manufacturing and possibly deal with a worrying chips shortage. The money will be invested over a 20 year period, according to Reuters.

The world’s largest semiconductor fabrication facility

Micron claims the project will be the world’s largest semiconductor fabrication facility and will create nearly 50,000 jobs in New York alone. Currently, the largest semiconductor manufacturers in the world are: Intel Corp., Samsung, Taiwan Semiconductor Manufacturing Co. Ltd. (TSMC), SK Hynix, Micron Technology Inc., Qualcomm, Broadcom Inc., and Nvidia.

The event will take place in a man-made city with a year-round winter sports complex.

Can you make snow in the desert? It seems you can, as Saudi Arabia will be hosting the 2029 Asian Winter Games, according to a report.


The games will take place at an under-construction US$500 billion megacity called Neom that is set to boast a year-round winter sports complex along with other futuristic amenities and features.

The project will take 7–8 years.

An 853-mile-long (1,373 km) undersea electricity cable connecting Egypt with Europe has been touted to help Europe’s impending energy crisis amidst Russia’s war with Ukraine.


Imaginima/iStock.

The undersea cable from northern Egypt to Attica, Greece, will be able to transport 3,000 MW of electricity, which is enough to power up to 450,000 homes, according to a report published by Euronews last month.

It looks like Musk’s buy-out will lead to the creation of his own app named X.

According to a report from Bloomberg News, Elon Musk has informed Twitter that he is once more prepared to purchase the business at his original offer of $54.20 a share. This news is also supported by an official U.S. Securities and Exchange Commission (SEC) filing from the 3rd of October 2022.

“Elon Musk is proposing to buy Twitter Inc. for the original offer price of $54.20 a share… Musk made the proposal in a letter to Twitter, according to people familiar with the matter, who asked not to be identified discussing confidential information,” states the Bloomberg report.


JD Lasica/Wikimedia Commons.