Toggle light / dark theme

This technique involves having participants place their finger over the camera and flash of a smartphone, which uses a deep-learning algorithm to decipher the blood oxygen levels from the blood flow patterns in the resulting video.


Conditions like asthma or COVID-19 make it harder for bodies to absorb oxygen from the lungs. This leads to oxygen saturation percentages dropping to 90% or below, indicating that medical attention is needed.

In a clinic, doctors monitor oxygen saturation using pulse oximeters — those clips you put over your fingertip or ear. But monitoring oxygen saturation at home multiple times a day could help patients keep an eye on COVID symptoms, for example.

However, in 1973, researchers from the Massachusetts Institute of Technology predicted the end of our civilization with the help of one of the most powerful supercomputers of that time.

In 1973, experts developed a computer program at MIT to model global sustainability. Instead, it predicted that by 2040 our civilization would end.

Recently, that prediction re-appeared in Australian Media, making its way to the rest of the world.

The National research center for Cybersecurity ATHENE has found a way to break one of the basic mechanisms used to secure internet traffic. The mechanism, called RPKI, is actually designed to prevent cybercriminals or government attackers from diverting traffic on the internet.

Such redirections are surprisingly common on the internet, for example, for espionage or through misconfigurations. The ATHENE scientist team of Prof. Dr. Haya Shulman showed that attackers can completely bypass the security mechanism without the affected network operators being able to detect this. According to analyses by the ATHENE team, popular implementations of RPKI worldwide were vulnerable by early 2021.

The team informed the manufacturers, and now presented the findings to the international expert public.

About a quarter of the world’s internet users live in countries that are more susceptible than previously thought to targeted attacks on their internet infrastructure. Many of the at-risk countries are located in the Global South.

That’s the conclusion of a sweeping, large-scale study conducted by computer scientists at the University of California San Diego. The researchers surveyed 75 .

“We wanted to study the topology of the internet to find weak links that, if compromised, would expose an entire nation’s traffic,” said Alexander Gamero-Garrido, the paper’s first author, who earned his Ph.D. in computer science at UC San Diego.

A new study has revealed that researchers have used artificial intelligence to create a map that allows them to predict the distribution of dark matter throughout the universe.

The new study has been published in the Astrophysical Journal and shows that researchers have taken a different approach to creating a model of the distribution of dark matter. So far, researchers know that dark matter makes up 80% of the universe, and creating a model of the distribution of dark matter allows cosmologists to construct what is called a “cosmic web”.

With this cosmic web, cosmologists and researchers will be able to see how dark matter impacts the motion of galaxies in the past, present, and future. Researchers in the new study used machine learning, a branch of artificial intelligence, to construct a new model. The AI was fed a large set of galaxy simulations that include galaxies, dark matter, visible matter, and gases.

A physicist from the University of Campinas in Brazil isn’t a big fan of the idea that time started with a so-called Big Bang. So Instead, Juliano César Silva Neves imagines a collapse followed by a sudden expansion, one that could even still carry the scars of a previous timeline.

Updated version of the previous article.

The idea itself isn’t new, but Neves has used a fifty-year-old mathematical trick describing black holes to show how our Universe needn’t have had such a compact start to existence. At first glance, our Universe doesn’t seem to have a lot in common with black holes. One is expanding space full of clumpy bits; the other is mass pulling at space so hard that even light has no hope of escape. But at the heart of both lies a concept known as a singularity – a volume of energy so infinitely dense, we can’t even begin to explain what’s going on inside it.