Toggle light / dark theme

A light beam with orbital angular momentum can produce the rotational analog of the Doppler effect on an ion.

A vortex light beam is one whose wave fronts rotate like a corkscrew, endowing the beam with orbital angular momentum. An atom subjected to this beam experiences the usual kick in the direction of the beam’s propagation but also a weaker, sideways kick from the beam’s orbital angular momentum. The Doppler effect causes a moving atom to absorb light at wavelengths that are shifted with respect to those of a stationary atom. Consequently, the sideways kick from a vortex beam can produce what is called a rotational Doppler effect (RDE) in an atom. Nicolás Nuñez Barreto of the University of Buenos Aires in Argentina and his collaborators have now characterized the RDE produced by infrared (IR) vortex beams on a single trapped calcium ion [1].

The researchers used IR lasers to drive a particular transition between electronic levels of the ion in a magnetic field. Two additional IR lasers created two identical copropagating vortex beams whose wavelengths could be adjusted. Thanks to the copropagation and the nature of the transition, the linear Doppler effects of the two beams canceled out. Only when the ion received different sideways kicks resulting from the beams’ unequal angular momenta did it absorb photons, revealing the presence and strength of the RDE.

Chinese researchers with ties to China’s People’s Liberation Army (PLA) have built an AI model called ChatBIT, designed for military applications using Meta’s open-source Llama model. According to Reuters, some researchers are associated with the Academy of Military Science (AMS), the PLA’s top research group.

Three academic papers and several analysts have confirmed the information, with ChatBIT using Meta’s Llama 13B large language model (LLM). This LLM has been modified for intelligence gathering and processing, allowing military planners to use it for operational decision-making.

The James Webb Space Telescope has just provided astronomers with the data that could change everything that we thought we knew about the cosmos. In a bizarre twist of fate, JWST observations indicate that ten extremely ancient galaxies exist in the universe, far older than the age of the universe itself. This extraordinary finding has excited much of the scientific world and debate, as scientists deal with what this might tell us about time, space, and the foundations of our understanding of cosmology.

Meteorites hold all five DNA and RNA bases, hinting that life’s ingredients may come from space!

Meteorites Contain All DNA and RNA Bases, Hinting at Space Origins for Life

A recent study published in Nature Communications reveals that meteorites contain the five nucleobases essential for life’s genetic code, suggesting a possible extraterrestrial origin for some of life’s building blocks. Scientists, including astrochemist Daniel Glavin from NASA’s Goddard Space Flight Center and geochemist Yasuhiro Oba from Hokkaido University, discovered adenine, guanine, cytosine, thymine, and uracil in meteorites that landed in various locations around the world. These nucleobases combine with sugars and phosphates to create DNA and RNA, the molecules responsible for storing genetic information in all life on Earth.

Cause and effect. We understand this concept from an early age. Tug on a pull toy’s string, and the toy follows. Naturally, things get much more complicated as a system grows, as the number of variables increases, and as noise enters the picture. Eventually, it can become almost impossible to tell whether a variable is causing an effect or is simply correlated or associated with it.

However, Dr. Robin Wordsworth of Harvard University and Dr. Charles S. Cockell of the University of Edinburgh argue that this focus has left unexplored possibilities for life in environments that don’t resemble our own.

In a preprint paper accepted for publication in the journal Astrobiology, researchers challenge conventional assumptions about extraterrestrial life and explore the feasibility of life existing in structures created by living organisms themselves.

As researchers suggest, life-supporting conditions created solely by biological structures could indeed exist, making it entirely possible for some forms of life to thrive in space habitats vastly different from those on Earth.

Changes to actin dynamics during brain aging are not well understood. Here, the authors report that there is an age-related increase in F-actin in Drosophila brain which disables autophagy within the tissue and limits the fly lifespan.

The discovery of the quantum tunneling (QT) effect—the transmission of particles through a high potential barrier—was one of the most impressive achievements of quantum mechanics made in the 1920s. Responding to the contemporary challenges, I introduce a deep neural network (DNN) architecture that processes information using the effect of QT. I demonstrate the ability of QT-DNN to recognize optical illusions like a human. Tasking QT-DNN to simulate human perception of the Necker cube and Rubin’s vase, I provide arguments in favor of the superiority of QT-based activation functions over the activation functions optimized for modern applications in machine vision, also showing that, at the fundamental level, QT-DNN is closely related to biology-inspired DNNs and models based on the principles of quantum information processing.