Menu

Blog

Page 4624

Sep 2, 2022

A new AI can finally illuminate the Moon’s darkest places

Posted by in categories: robotics/AI, space

IStock/Just_Super.

Future lunar missions will be able to find acceptable spots thanks to the knowledge they have gained about the region’s physical properties.

Sep 2, 2022

Neurons Have Emergency Back-Up System, Neuroscientists Say

Posted by in category: neuroscience

The newly-discovered neuronal back-up system safeguards metabolic flexibility of neurons to cope with energy demands of electrical signaling, according to a team of researchers from the Center of Physiology and Pharmacology at the Medical University of Vienna.

If one of these systems fails, another one takes over and ensures that sufficient energy is supplied to meet the prevailing requirement.

Sep 2, 2022

How The Penrose Singularity Theorem Predicts The End of Space Time

Posted by in categories: cosmology, physics, singularity

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE
↓ More info below ↓

The Nobel prize in physics this year went to black holes. Generally speaking. Specifically, it was shared by the astronomers who revealed to us the Milky Way’s central black hole and by Roger Penrose, who proved that in general relativity, every black hole contains a place of infinite gravity — a singularity. But the true impact of Penrose’s singularity theorem would is much deeper — it leads us to the limits Einstein’s great theory and to the origin of the universe.

Continue reading “How The Penrose Singularity Theorem Predicts The End of Space Time” »

Sep 2, 2022

Meta AI can tell which words you hear

Posted by in category: robotics/AI

The company behind Facebook has created an AI that could one day be used to help nonverbal people better communicate.

Sep 2, 2022

Revolutionizing Infrared Sensing Could Transform Imaging Applications

Posted by in categories: biotech/medical, chemistry, food, health, military, quantum physics

The infrared (IR) spectrum is a vast information landscape that modern IR detectors tap into for diverse applications such as night vision, biochemical spectroscopy, microelectronics design, and climate science. But modern sensors used in these practical areas lack spectral selectivity and must filter out noise, limiting their performance. Advanced IR sensors can achieve ultrasensitive, single-photon level detection, but these sensors must be cryogenically cooled to 4 K (−269 C) and require large, bulky power sources making them too expensive and impractical for everyday Department of Defense or commercial use.

DARPA’s Optomechanical Thermal Imaging (OpTIm) program aims to develop novel, compact, and room-temperature IR sensors with quantum-level performance – bridging the performance gap between limited capability uncooled thermal detectors and high-performance cryogenically cooled photodetectors.

“If researchers can meet the program’s metrics, we will enable IR detection with orders-of-magnitude improvements in sensitivity, spectral control, and response time over current room-temperature IR devices,” said Mukund Vengalattore, OpTIm program manager in DARPA’s Defense Sciences Office. “Achieving quantum-level sensitivity in room-temperature, compact IR sensors would transform battlefield surveillance, night vision, and terrestrial and space imaging. It would also enable a host of commercial applications including infrared spectroscopy for non-invasive cancer diagnosis, highly accurate and immediate pathogen detection from a person’s breath or in the air, and pre-disease detection of threats to agriculture and foliage health.”

Sep 2, 2022

Look! Webb Telescope snaps a startling picture of one of our nearest galactic neighbors

Posted by in category: space

This user-processed NIRCam image of a glittering star field shows that Reddit is the gift that keeps on giving for Webb Space Telescope fans.

Sep 2, 2022

Researchers Just Wirelessly Transmitted Power Over 98 Feet of Thin Air

Posted by in categories: electronics, mobile phones

We could one day charge our phones and tablets wirelessly through the air, thanks to newly developed technology.

Researchers have used infrared laser light to transmit 400mW of light power over distances of up to 30 meters (98 feet). That’s enough juice to charge small sensors, though in time it could be developed to charge up larger devices such as smartphones too.

All this is done in a way which is perfectly safe – the laser falls back to a low power mode when not in use.

Sep 2, 2022

Scientists freeze molecule to almost absolute zero

Posted by in category: futurism

Circa 2015 freeze laser :3.


Thanks to Elsa’s freezing powers lasers and some advanced techniques, a team of MIT scientists has managed to freeze a molecule to 500 nanokelvins: a temp that’s nearly absolute zero.

Sep 2, 2022

Plotting Out a Path to the Trillion Transistor Era

Posted by in category: computing

At Hot Chips, CEO Pat Gelsinger said Intel has everything it needs to put a trillion transistors in a package by 2030.

Sep 2, 2022

Femtosecond logic gate offers ultrafast computing

Posted by in category: computing

face_with_colon_three femtosecond logic gate on computer.


Rochester and Erlangen team uses lasers to control real and virtual charge.