Toggle light / dark theme

Astronomers studying cosmic dust in a spiral galaxy discovered an even more distant galaxy.


And the light being shed, in this case, comes partly from the elliptical galaxy on the left side of the image. Astronomers used Webb and Hubble to watch the light from the elliptical galaxy, which is farther away than its partner, shining through the dusty arms of the spiral galaxy. The two galaxies are close neighbors, but not quite close enough to be in danger of colliding and merging.

In fact, the elliptical galaxy on the left is doing a lot of work in this image. Not only is it backlighting the dust in its neighbor’s spiral arms, but it’s providing a gravitational lens to reveal a distant galaxy that astronomers had never seen before.

A galaxy far, far away — The reddish arc just above and to the left of the elliptical galaxy, at about the 10 o’clock position, is actually another galaxy, stretched and warped by the effects of the gravitational lens, which bends the distant galaxy’s light around the closer elliptical galaxy’s mass. A red dot at about the 4 o’clock position is another refracted image of the same distant galaxy.

Jefferson Lab tests a next-generation data acquisition scheme

Nuclear physics experiments worldwide are becoming ever more data intensive as researchers probe ever more deeply into the heart of matter. To get a better handle on the data, nuclear physicists are now turning to artificial intelligence and machine learning methods to help sift through the torrent in real-time.

A recent test of two systems that employ such methods at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility found that they can, indeed, enable real-time processing of raw data. Such systems could result in a streamlined data analysis process that is faster and more efficient, while also keeping more of the original data for future analysis than conventional systems. An article describing this work was recently published in The European Physical Journal Plus .

A team of researchers at Northwestern University has devised a new platform for gene editing that could inform the future application of a near-limitless library of CRISPR-based therapeutics.

Using chemical design and synthesis, the team brought together the Nobel-prize winning technology with therapeutic technology born in their own lab to overcome a critical limitation of CRISPR. Specifically, the groundbreaking work provides a system to deliver the cargo required for generating the gene editing machine known as CRISPR-Cas9. The team developed a way to transform the Cas-9 protein into a spherical nucleic acid (SNA) and load it with critical components as required to access a broad range of tissue and cell types, as well as the intracellular compartments required for gene editing.

The research, published today in a paper titled, “CRISPR Spherical Nucleic Acids,” in the publication Journal of the American Chemical Society, and shows how CRISPR SNAs can be delivered across the cell membrane and into the nucleus while also retaining bioactivity and gene editing capabilities.

Objects in our visual environment often move unpredictably and can suddenly speed up or slow down. The ability to account for acceleration when interacting with moving objects can be critical for survival. Here, we investigate how human observers track an accelerating target with their eyes and predict its time of reappearance after a temporal occlusion by making an interceptive hand movement. Before occlusion, observers smoothly tracked the accelerating target with their eyes. At the time of occlusion, observers made a predictive saccade to the location where they subsequently intercepted the target with a quick pointing movement.

Keep exploring at https://brilliant.org/APERTURE. Get started for free, and hurry—the first 200 people get 20% off an annual premium subscription.

Read the story: https://aperture.gg/blogs/the-universe/how-big-is-the-universe.
Merch: https://aperture.gg/merch.

Have you ever looked up at the night sky and pondered about your very own existence? Maybe you were camping out with some friends, or all alone marvelling at the big canvas of darkness plastered with countless glowing stars. Well, you’re not alone. Looking above and contemplating the sheer immensity of the Universe is something humans have been doing since the dawn of time.

Stay connected with Aperture:

Could human civilization eventually spread across the whole Milky Way galaxy? Could we move beyond our small, blue planet to establish colonies in the multitude of star systems out there? These questions are pretty daunting, but their (theoretical) answers were actually put forth decades ago. Roey Tzezana describes the conceptual von Neumann machine. [Directed by Eoin Duffy, narrated by Addison Anderson, music by Wesley Slover].

Today, one of the biggest paradoxes in the universe threatens to unravel modern science: the black hole information paradox. Every object in the universe is composed of particles with unique quantum properties and even if an object is destroyed, its quantum information is never permanently deleted. But what happens to that information when an object enters a black hole? Fabio Pacucci investigates. [Directed by Artrake Studio, narrated by Addison Anderson, music by WORKPLAYWORK / Cem Misirlioglu].