Toggle light / dark theme

The Florida Institute for Human & Machine Cognition (IHMC) is well known in bipedal robotics circles for teaching very complex humanoid robots to walk. Since 2015, IHMC has been home to a Boston Dynamics Atlas (the DRC version) as well as a NASA Valkyrie, and significant progress has been made on advancing these platforms toward reliable mobility and manipulation. But fundamentally, we’re talking about some very old hardware here. And there just aren’t a lot of good replacement options (available to researchers, anyway) when it comes to humanoids with human-comparable strength, speed, and flexibility.

Several years ago, IHMC decided that it was high time to build their own robot from scratch, and in 2019, we saw some very cool plastic concepts of Nadia —a humanoid designed from the ground up to perform useful tasks at human speed in human environments. After 16 (!) experimental plastic versions, Nadia is now a real robot, and it already looks pretty impressive.

India’s Mars Orbiter Mission, known as MOM, has ended after eight years – even though it was designed for a six-month lifespan, the Indian Space Research Organization announced this week.

The Mars orbiter launched on Nov. 5, 2013 and made it into orbit about 10 months later. It was an enormous feat to have reached Mars’ orbit successfully in the first attempt, Dr. K. Radhakrishnan, a member of India’s space commission, said during an address Monday.

In 2014, more than half of the world’s attempts at such a mission – 23 out of 41 – had failed, according to the Associated Press. The U.S. was successful with a Mars flyby in 1964, when a spacecraft called Mariner 4 returned with 21 images of the surface of the planet. Other successful missions include the Soviet Union’s in 1971 and the European Space Agency’s in 2003.

A team of 86 scientists from 13 countries recently carried out extensive high-time resolution optical monitoring of a distant active galaxy, BL Lacertae (BL Lac). Mike Joner, BYU research professor of physics and astronomy, was one of the astronomers contributing to the project.

Dr. Joner and BYU undergraduate student Gilvan Apolonio secured over 200 observations of the galaxy using the 0.9-meter reflecting at the BYU West Mountain Observatory. Their measurements were combined with observations made by other scientists around the world in a collaboration known as the Whole Earth Blazar Telescope (WEBT). The WEBT network makes it possible to monitor objects around the clock from different locations during times of high variability.

Using the WEBT observations made in the summer of 2020, astronomers discovered surprisingly rapid oscillations of brightness in the central jet of the galaxy BL Lac. The scientists attribute these cycles of brightness change to twists in the jet’s magnetic field. Their study was recently published in Nature.

Our Next Energy Inc., an electric-car battery startup involving several former leaders of Apple secretive car project, is planning to invest $1.6 billion into a factory in Michigan to make enough battery cells for about 200,000 EVs annually.

The state of Michigan on Wednesday approved a $200 million grant for the project that promises to create 2,112 new jobs once the facility in Van Buren Township, about 10 miles west of the Detroit airport, is fully operational by the end of 2027. The company must create and maintain the jobs or face a clawback of the funds.

In a recent study published in the eLife journal, researchers demonstrated that tumor cells evade immunotherapy by generating unique transient cell-in-cell structures, resistant to chemotherapy and destruction by T cells.

Despite some remarkable success stories, cancer immunotherapies that use the body’s immune system to combat cancer stops working in many patients. It is unclear why this occurs, but how the immune system attacks cancer cells might have a role to play in this phenomenon.

Immunotherapies activate specialized killer T-cells, which trigger the immune response to tumors. These cells can identify cancer cells and inject toxic granules through their membranes to kill them. However, killer T-cells are not always effective because cancer cells are inherently good at avoiding detection. During treatment, their genes tend to mutate, giving them novel ways to evade the human immune system.

This video is the 1st of a series of “What is Aging” webinars that aims to unravel what aging is, how we age, why we age, and how to reverse it.

We welcome Jason C. Mercurio, MFE, Dr. Jose Cordeiro, and Dr. Ian Hale to discuss the topic.

Thanks to our transhumanist influencers including:
@G. Stolyarov II @Ray Kurzweil 2017 @The Singularity is Near.
#ageless #agelesspartners #agereveal #longevity #biohacking #biotechnology #agingbackwards.

Book a coaching session with an Ageless Coach today:

Stanford University researchers have discovered a rapid and sustainable way to synthetically produce a promising cancer-fighting compound right in the lab. The compound’s availability has been limited because its only currently known natural source is a single plant species that grows solely in a small rainforest region of Northeastern Australia.

The compound, designated EBC-46 and technically called tigilanol tiglate, works by promoting a localized against tumors. The response breaks apart the ’s blood vessels and ultimately kills its cancerous cells. EBC-46 recently entered into following its extremely high success rate in treating a kind of cancer in dogs.

Given its complex structure, however, EBC-46 had appeared synthetically inaccessible, meaning no plausible path seemed to exist for producing it practically in a laboratory. However, thanks to a clever process, the Stanford researchers demonstrated for the first time how to chemically transform an abundant, plant-based starting material into EBC-46.