Toggle light / dark theme

Put horror movies and games aside for a few minutes to listen to something truly unsettling this Halloween season. The has released audio of what our planet’s magnetic field sounds like. While it protects us from cosmic radiation and charged particles from solar winds, it turns out that the magnetic field has an unnerving rumble.

You can’t exactly point a microphone at the sky and hear the magnetic field (nor can we see it). Scientists from the Technical University of Denmark collected by the ESA’s three Swarm satellites into sound, representing both the magnetic field and a solar storm.

The ethereal audio reminds me of wooden wind chimes rattling as a mass of land shifts, perhaps during an earthquake. It brings to mind the cracking sounds of a moving glacier as well. You might get something different out of the five-minute clip.

Our immune system is the first line of defense against disease, but unfortunately it can go rogue and attack healthy tissues. Scientists at Johns Hopkins University have now engineered a protein that may help prevent these autoimmune diseases by boosting the number of regulatory T cells (Tregs).

The immune system keeps a vigilant watch over our bodies at all times, tagging and destroying foreign pathogens or problematic cells to prevent illness. However, sometimes it can get a little overzealous and start attacking the body’s own cells, which can trigger a range of autoimmune diseases like type 1 diabetes, lupus and rheumatoid arthritis.

To prevent these issues from arising, immune cells called Tregs play the vital role of keeping the immune system responses in check, but they can fail at this job. So for the new study, the researchers set out to boost their numbers, following previous studies that have shown promise in doing so to help treat autoimmune diseases like multiple sclerosis and Crohn’s disease.

In the past decades, the number of known exoplanets—planets in other solar systems—has skyrocketed. But we’re still in the dark about a number of details, including how massive they are and what they’re made up of.

A University of Chicago undergraduate, however, was able to tease some clues out of that most scientists had overlooked.

Jared Siegel, B.S. ‘22, spent six months analyzing data taken by a NASA spacecraft. Some of this data was full of statistical noise, making it hard to differentiate from other phenomena; but Siegel and his advisor, astrophysicist Leslie Rogers, were able to extract useful information about these planets, setting an upper bound on how massive they could be.

Quarks all the way down.


Astronomers recently discovered that this neutron star left behind by the collapse and explosion of a supergiant is now roughly 77 percent the mass of our Sun, packed into a sphere about 10 kilometers wide. That’s a mind-bogglingly dense ball of matter — it’s squished together so tightly that it doesn’t even have room to be atoms, just neutrons. But as neutron stars go, it’s weirdly lightweight. Figuring out why that’s the case could reveal fascinating new details about exactly what happens when massive stars collapse and explode.

What’s New — When a massive star collapses, it triggers an explosion that blasts most of the star’s outer layers out into space, where they form an ever-widening cloud of hot, glowing gas. The heart of the star, however, gets squashed together in the final pressure of that collapse and becomes a neutron star. Normally, what’s left behind is something between 1.17 and 2.35 times as massive as the Sun, crammed into a ball a few dozen kilometers wide.

The deal, which was formally signed on the sidelines of the World Cancer Congress in Geneva this week, marks the first time a pharmaceutical company is making a patented cancer medicine available through a voluntary licensing scheme. “This is important because it’s the first and helps show that voluntary licences can work for cancer drugs,” Charles Gore, the executive director of the Medicines Patent Pool (MPP), told SWI swissinfo.ch.


Swiss pharma giant Novartis has finalised a deal to allow generic production of its patented drug nilotinib to treat chronic myeloid leukemia.

Join Pattie Maes, Andy Lippman, and a host of special guests and Media Lab researchers for a deep dive into generative artificial intelligence—the use of deep learning and large data sets to produce text, sound, images, movies, 3D designs, virtual characters, even proteins and drug candidates.

This discussion will be livestreamed, and no registration is required; it will be embedded on this page before the presentations begin. The livestream will be closed-captioned, and the archived video will be posted with closed captions within a few days of the event.

Billions of years ago, a version of planet Earth that looked very different than the one we live on today was hit by an object about the size of Mars, called Theia – and out of that collision the Moon was formed. How exactly that formation occurred is a scientific puzzle researchers have studied for decades, without a conclusive answer.

Until now, most theories have claimed that the Moon formed out of the debris of this collision, coalescing in orbit over months or years. However, a new simulation presents a different outcome – the Moon may have formed immediately, in a matter of hours, when material from the Earth and Theia was launched directly into orbit after the impact.

“This opens up a whole new range of possible starting places for the Moon’s evolution,” said Jacob Kegerreis, a postdoctoral researcher at NASA’s Ames Research Center in California and lead author of a paper this month in The Astrophysical Journal Letters. “We went into this project not knowing exactly what the outcomes of these high-resolution simulations would be. So, on top of the big eye-opener that standard resolutions can give you misleading answers, it was extra exciting that the new results could include a tantalisingly Moon-like satellite in orbit.”