Toggle light / dark theme

The most observant of our readers might have already noticed a small little detail about Oasis, a caveat that only the most eagle-eyed OSINT enthusiasts would catch – it’s basically a 1-to-1 copy of Mojang’s Minecraft.

And those readers would be right. Essentially, the “first AI-generated game” is nothing more than blatant plagiarism of everyone’s favorite sandbox, trained on thousands of hours of Minecraft gameplay and recordings of corresponding user actions, which resulted in a nearly identical, but worse in every aspect, “game” with a similar visual style, UI, gameplay mechanics, fonts, visual effects, animations, and so on.

One thing that doesn’t exist in the original Minecraft but is front and center in Oasis is, of course, AI hallucinations. Those who have tried it confirm that the experience is incredibly unstable, with environments often morphing into something else when not in the player’s direct line of sight, making the “first AI-generated game” a proof of concept at best, something that its creators, to their credit, openly admit, describing the current iteration of Oasis as a “technical demo.”

Around 2.2 billion years ago, a massive space rock collided against our planet, leaving a massive scar.

Around 200 million years older than any other site like it on the planet’s surface, the so-called Yarrabubba impact structure is located in Australia.

Although the impact site is the oldest found to date, finding it was not easy.

White holes, the theoretical opposites of black holes, could expel matter instead of absorbing it. Unlike black holes, whose event horizon traps everything, white holes would prevent anything from entering. While no white holes have been observed, they remain an intriguing mathematical possibility. Some astrophysicists have speculated that gamma ray bursts could be linked to white holes, and even the Big Bang might be explained by a massive white hole. Although the second law of thermodynamics presents a challenge, studying these singularities could revolutionize our understanding of space-time and cosmic evolution.

After reading the article, Harry gained more than 724 upvotes with this comment: “It amazes me how Einstein’s theory and equations branched off into so many other theoretical phenomena. Legend legacy.”

Black holes may well be the most intriguing enigmas in the Universe. Believed to be the collapsed remnants of dead stars, these objects are renowned for one characteristic in particular – anything that goes in never comes out.

Gaia BH3, a dormant black hole, quietly lurks 1,926 light-years away, nearly 33 times the Sun’s mass, making it one of the Milky Way’s largest stellar black holes.

Astronomers recently made a groundbreaking discovery: a dormant black hole named Gaia BH3, residing about 1,926 light-years away in the Milky Way’s Aquila constellation. Known as a “sleeping giant,” Gaia BH3 is approximately 33 times the Sun’s mass, making it the largest stellar black hole known in our galaxy. This black hole is only the second nearest to Earth, with Gaia BH1 slightly closer at around 1,500 light-years away.

The find was unintentional. Researchers were sifting through data from the European Space Agency’s Gaia space telescope, anticipating an upcoming data release when they noticed an unusual wobbling motion in a nearby star. This disturbance revealed the presence of Gaia BH3, whose immense gravitational force was causing a nearby giant star to orbit around it. This wobble marked the third dormant black hole identified by Gaia, a significant milestone in astronomical research.

A scheme that moves electromagnetically trapped ions around a 2D array of sites could aid development of scaled-up ion-based quantum computing.

Arrays of ions held in electromagnetic traps could eventually become powerful quantum computers, but as the number of ions increases, linear arrays become impractical. Rearranging the ions to achieve interactions between any specific pair becomes challenging, but now researchers have demonstrated a 2D scheme that does it more efficiently [1]. Using this approach, the full range of quantum operations is feasible with relatively simple applied voltages, and the researchers believe that it should soon find use in practical ion-based devices.

In trapped-ion quantum processors, single ions represent quantum bits (qubits). One of the main advantages of this technology is that individual ions can be moved around, says Robert Delaney of Quantinuum, a quantum-computing company. If rearranging ions—known as sorting—can bring every ion close enough to every other ion to allow pairwise quantum entanglement, the system has what is called all-to-all connectivity.

Cratons are fascinating yet enigmatic geological formations. Known to be relatively stable portions of the Earth’s continental crust, cratons have remained largely unchanged for billions of years. Although cratons have survived many geological events, some are undergoing decratonization—a process characterized by their deformation and eventual destruction.

The fastest animal on land is the cheetah, capable of reaching top speeds of 104 kilometers per hour. In the water, the fastest animals are yellowfin tuna and wahoo, which can reach speeds of 75 and 77 km per hour respectively. In the air, the title of the fastest level flight (excluding diving) goes to the white-throated needletail swift, at more than 112 km per hour.