Toggle light / dark theme

Hyperspectral imaging (HSI), or imaging spectroscopy, captures detailed information across the electromagnetic spectrum by acquiring a spectrum for each pixel in an image. This enables precise identification of materials through their spectral signatures.

HSI supports Earth remote sensing applications such as automated classification, abundance mapping, and estimation of physical and biological properties like soil moisture, sediment density, , biomass, leaf area, and pigment content.

Although HSI offers detailed insight into a remote sensing scene, HSI data may not be readily available for an intended application. Recent studies have attempted to combine HSI with traditional red-green-blue (RGB) video acquisition to lower costs and improve performance. However, this fusion technology still faces technical challenges.

New studies stemming from the Armamentarium consortium outline findings that advance tools based on Adeno-associated virus (AAV) vectors. An announcement about the work explains how an AAV “acts like a shuttle capable of transporting specially designed DNA into the cell.”

Two of the studies on these AAV tools were conducted by collaborative teams organized by Xiangmin Xu, Ph.D., UC Irvine Chancellor’s Professor of anatomy and neurobiology and director of the campus’s Center for Neural Circuit Mapping.

“This Armamentarium’s collection of work enables new tools that help to deepen our understanding of the human central nervous system structure and function,” says Xu. “Our own brain-targeting technology could help treat Alzheimer’s disease and many other neurological disorders.”

Charging electric-vehicle batteries in Ithaca’s frigid winter can be tough, and freezing temperatures also decrease the driving range. Hot weather can be just as challenging, leading to decomposition of battery materials and, possibly, catastrophic failure.

For (EVs) to be widely accepted, safe and fast-charging lithium-ion batteries need to be able to operate in extreme temperatures. But to achieve this, scientists need to understand how materials used in EVs change during temperature-related chemical reactions, a so-far elusive goal.

Now, Cornell chemists led by Yao Yang, Ph.D. ‘21, assistant professor of chemistry and chemical biology in the College of Arts and Sciences, have developed a way to diagnose the mechanisms behind battery failure in extreme climates using electron microscopy. Their first-of-its-kind operando (“operating”) electrochemical transmission electron microscopy (TEM) enables them to watch chemistry in action and collect real-time movies showing what happens to energy materials during temperature changes.

Diamond is one of the most prized materials in advanced technologies due to its unmatched hardness, ability to conduct heat and capacity to host quantum-friendly defects. The same qualities that make diamond useful also make it difficult to process.

Engineers and researchers who work with diamond for quantum sensors, or thermal management technologies need it in ultrathin, ultrasmooth layers. But traditional techniques, like laser cutting and polishing, often damage the material or create surface defects.

Ion implantation and lift-off is a way to separate a thin layer of diamond from a larger crystal by bombarding a diamond with high-energy carbon ions, which penetrate to a specific depth below the surface. The process creates a buried layer in the diamond substrate where the crystalline lattice has been disrupted. That damaged layer effectively acts like a seam: Through high-temperature annealing, it turns into smooth graphite, allowing for the diamond layer above it to be lifted off in one uniform, ultrathin wafer.

Scientists in China have developed contact lenses that let wearers see light normally invisible to the human eye. Cooler still, the lenses work better through closed eyelids, and other versions could help correct color blindness.

The human eye can see a relatively limited range of colors – light with wavelengths of between about 400 and 700 nanometers. In typical human-centric fashion, we call that the ‘visible’ part of the spectrum, even though other animals can see beyond it.

In a new study, scientists have helped humans catch a glimpse of light between 800 and 1,600 nanometers in length, a range we normally can’t see known as infrared. The trick is to pop in a pair of contact lenses embedded with nanoparticles that convert the infrared wavelengths into visible ones.