Toggle light / dark theme

A private lunar lander has captured the first high-definition sunset pictures from the moon.

Firefly Aerospace and NASA released the stunning photos Tuesday, taken before the Blue Ghost lander fell silent over the weekend. One shot included Venus in the distance.

Firefly’s Blue Ghost landed on the on March 2, the first private spacecraft to touch down upright and perform its entire mission. It kept taking pictures and collecting science data five hours into the lunar night before it died for lack of solar energy.

A research team at UNIST has identified the causes of oxygen generation in a novel cathode material called quasi-lithium and proposed a material design principle to address this issue.

Quasi-lithium materials theoretically enable batteries to store 30% to 70% more energy compared to existing technologies through high-voltage charging of over 4.5V. This advancement could allow to achieve a of up to 1,000 km on a single charge. However, during the high-voltage charging process, oxygen trapped inside the material can oxidize and be released as gas, posing a significant explosion risk.

The research team, led by Professor Hyun-Wook Lee in the School of Energy and Chemical Engineering, discovered that oxygen oxidizes near 4.25V, causing partial structural deformation and gas release.

A new study by UCLA Health has discovered what researchers say is the first drug to fully reproduce the effects of physical stroke rehabilitation in model mice, following from human studies.

The findings, published in Nature Communications, tested two candidate drugs derived from their studies on the mechanism of the brain effects of rehabilitation, of which one resulted in significant recovery in movement control after stroke in the mouse model.

Stroke is the leading cause of adult disability because most patients do not fully recover from the effects of stroke. There are no drugs in the field of stroke recovery, requiring stroke patients to undergo physical rehabilitation which has shown to be only modestly effective.

Structural adhesives play a crucial role in assembling automobiles, aircraft, and buildings. Among these, epoxy adhesives stand out for their exceptional mechanical strength and durability. However, traditional cured epoxy resins are often rigid and lack flexibility, resulting in low peel and impact strength.

Now, a groundbreaking advancement in structural adhesives has emerged from the laboratories of Nagoya University, promising to transform material bonding as we know it. This next-generation adhesive boasts an unprecedented impact strength – 22 times higher than conventional epoxy-based adhesives without rubbery additives.


New adhesive using elastomer makes lighter, more carbon-efficient vehicles possible.

Memory engrams are formed through experience-dependent plasticity of neural circuits, but their detailed architectures remain unresolved. Using three-dimensional electron microscopy, we performed nanoscale reconstructions of the hippocampal CA3-CA1 pathway after chemogenetic labeling of cellular ensembles recruited during associative learning. Neurons with a remote history of activity coinciding with memory acquisition showed no strong preference for wiring with each other. Instead, their connectomes expanded through multisynaptic boutons independently of the coactivation state of postsynaptic partners. The rewiring of ensembles representing an initial engram was accompanied by input-specific, spatially restricted upscaling of individual synapses, as well as remodeling of mitochondria, smooth endoplasmic reticulum, and interactions with astrocytes.

AI gives a thumbs up to Brett Bellmore innovative modifications to Robert Zubrin’s Nuclear Salt Water Rocket (NSWR). Switching from water to polyethene and storing in sausage strings could enhance its performance and safety, particularly focusing on avoiding criticality during storage, minimizing parasitic mass, and addressing practical challenges like micrometeorite protection and fuel state.

Robert Zubrin’s Nuclear Salt Water Rocket (NSWR) design is a rocket that uses known physics and engineering. My previous analysis shows that the first working prototype might be made in space with a 10–20 year development program for 10–30 billion. There are versions that could reach 7–8% of light speed. The use of low grade uranium enrichment for a more near term version is the one that is often described. However, if weapons grade uranium (90% enrichment) is used then he exhaust would be at 1.575% of the speed of light. A 30,000 ton ice asteroid and 7,500 tons of uranium could propel a 300 ton payload including a crew to 7.62% of light speed.

One of key parts of the engineering is to use water to protect the nozzle from the intense heat of the system. A combination of the coatings and space between the pipes would prevent the solution from reaching critical mass until it was pumped into a reaction chamber. It would reach critical mass and it being expelled through a nozzle to generate thrust. The nozzle would be protected by running water.

Download Star Trek Fleet Command for FREE now here: https://bit.ly/3XYvSJ2 to support my channel, and enter the promo code VOYAGER30 to unlock Neelix, the morale officer from Voyager FREE.

Dr. Clément Vidal joins John Michael Godier to discuss his new paper on the Spider Stellar Engine, a hypothetical form of stellar propulsion using binary pulsar systems. The conversation explores how such systems could serve as **technosignatures**, the philosophy of post-biological civilizations, and the potential for advanced beings to manipulate entire stars or even create new universes.

Vidal, C. 2024. “The Spider Stellar Engine: A Fully Steerable Extraterrestrial Design?” Journal of the British Interplanetary Society 77 : 156–66. doi:10.59332/jbis-077–05-0156. https://arxiv.org/abs/2411.05038.

Vidal, C. 2019. “Pulsar Positioning System: A Quest for Evidence of Extraterrestrial Engineering.” International Journal of Astrobiology 18 : 213–34. doi:10.1017/S147355041700043X. https://arxiv.org/abs/1704.03316.

Delahaye, J. P., and C. Vidal. 2018. “Organized Complexity: Is Big History a Big Computation?” American Philosophical Association Newsletter on Philosophy and Computers 17 : 49–54. http://arxiv.org/abs/1609.07111.

#EventHorizon #SETI #Technosignatures #Astrophysics #StellarEngines #FermiParadox #ExtraterrestrialLife #Pulsars #SpaceExploration #PhilosophyOfScience #cosmology.

“.


Gene therapy was used to increase levels of Klotho, one of the first longevity genes discovered in the 1990’s, in mice. This led to improved physical fitness, muscular regenerative capacity, bone micrstructure, neurogenesis and a 20% increase in lifespan.

Contents:

Intro 0:00
Figure 1 — Longevity experiment follow-up and AAV treatment effectivity assessment 1:20
Figure 2 — Physical tests and histological analysis of muscular tissue from treated naturally aged animals 4:04
Figure 3 — Histological analysis of muscle from s-KL-treated animals 7 days after transplantation 6:27
Figure 4 — MicroCT structural and gene expression analysis in treated bones of 24-MO mice 7:34
Figure 5 — Histological analysis of Iba1, GFAP, and neurogenesis markers in CNS from aged animals 8:52
Figure 6 — Transcriptomic analysis of hippocampal RNA-seq data 9:59
Graphical Abstract & Conclusion 11:04.

Study reviewed: