Toggle light / dark theme

Bits of the stars are all around us, and in us, too. About half of the abundance of elements heavier than iron originates in some of the most violent explosions in the cosmos. As the universe churns and new stars and planets form out of old gas and dust, these elements eventually make their way to Earth and other worlds. After 3.7 billion years of evolution on our planet, humans and many other species have come to rely on them in our bodies and our lives. Iodine, for instance, is a component of hormones we need to control our brain development and regulate our metabolism. Ocean microplankton called Acantharea use the element strontium to create intricate mineral skeletons. Gallium is critical for the chips in our smartphones and our laptop screens. And the mirrors of the JWST are gilded with gold, an element useful for its unreactive nature and ability to reflect infrared light (not to mention its popularity in jewelry).

Scientists have long had a basic idea of how these elements come to be, but for many years the details were hazy and fiercely debated. That changed recently when astronomers observed, for the first time, heavy-element synthesis in action. The process, the evidence suggests, went something like this.

Eons ago a star more than 10 times as massive as our sun died in a spectacular explosion, giving birth to one of the strangest objects in the universe: a neutron star. This newborn star was a remnant of the stellar core compressed to extreme densities where matter can take forms we do not understand. The neutron star might have cooled forever in the depths of space, and that would have been the end of its story. But most massive stars live in binary systems with a twin, and the same fate that befell our first star eventually came for its partner, leaving two neutron stars circling each other. In a dance that went on for millennia, the stars spiraled in, slowly at first and then rapidly. As they drew closer together, tidal forces began to rip them apart, flinging neutron-rich matter into space at velocities approaching one-third the speed of light. At last the stars merged, sending ripples through spacetime and setting off cosmic fireworks across the entire electromagnetic spectrum.

To get started planning a career that works on one of the world’s most pressing problems, sign up now at https://80000hours.org/isaacarthur.
Alpha Centauri may be the closest star system to us, but reaching it will be the voyage of a lifetime.

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-arthur.
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE

Listen or Download the audio of this episode from Soundcloud: Episode’s Audio-only version: https://soundcloud.com/isaac-arthur-148927746/journey-to-alpha-centauri.
Episode’s Narration-only version: https://soundcloud.com/isaac-arthur-148927746/journey-to-alp…ation-only.

Credits:

Whether it is steamed idli, Gujarati snack, panki; Parsi’s patra ni machchi, Assam’s bhapot diya maach or the elaborate Onam Sandhya from Kerala, the humble banana leaf has found its way into many cuisines.

It is also very versatile as food can be steamed, grilled and deep-fried. It can also be used as a serving plate and packaging material.

While banana leaves have been an integral part of the desi food and traditions, did you know there are health benefits to it as well?

“These objects are way more massive than anyone expected,” said study coauthor Joel Leja, assistant professor of astronomy and astrophysics at Penn State University, in a statement. “We expected only to find tiny, young, baby galaxies at this point in time, but we’ve discovered galaxies as mature as our own in what was previously understood to be the dawn of the universe.”

The telescope observes the universe in infrared light, which is invisible to the human eye, and is capable of detecting the faint light from ancient stars and galaxies. By peering into the distant universe, the observatory can essentially see back in time up to about 13.5 billion years ago. (Scientists have determined the universe is about 13.7 billion years old.)

The operations center for the telescope is in Baltimore City, at the Space Telescope Science Institute on the Johns Hopkins campus.

Russia launched a rescue ship on Friday for two cosmonauts and a NASA astronaut whose original ride home sprang a dangerous leak while parked at the International Space Station.

The new, empty Soyuz capsule should arrive at the orbiting lab on Sunday.

The capsule leak in December was blamed on a micrometeorite that punctured an external radiator, draining it of coolant. The same thing appeared to happen again earlier this month, this time on a docked Russian cargo ship. Camera views showed a small hole in each spacecraft.

But the computing power necessary for a company to adopt in-house AI capabilities is enormous, and that’s where Nvidia’s new service offering comes in. Dubbed “DGX Cloud,” Nvidia is offering an AI supercomputer accessible to its customers via a web browser. The company partnered with various cloud providers, including Microsoft, Google, and Oracle, to launch the service.

“Nvidia AI as a service offers enterprises easy access to the world’s most advanced AI platform, while remaining close to the storage, networking, security and cloud services offered by the world’s most advanced clouds,” Huang explained.

“Nvidia AI is essentially the operating system of AI systems today,” Huang also said.

Earlier today, Samsung announced its own solution for satellite communication on smartphones. The company unveiled the 5G non-terrestrial networks (NTN) modem so phones can communicate with satellites in locations where there is no cellular network connectivity.

The company said that it aims to integrate this tech into its own Exynos chip, which is used in a lot of Samsung smartphones — but not the current flagship device, the Samsung Galaxy S23. The Korean tech giant describes this tech as using “satellites and other non-terrestrial vehicles” to provide connectivity in remote areas.

The move follows Apple, which launched satellite connectivity with iPhone 14 and 14 Pro for off-grid connectivity. The company first made this tech available in the U.S. and Canada, later expanding it to France, Germany, Ireland and the U.K. Apple relies on Globalstar’s satellite network.

No one has ever probed a particle more stringently than this.

In a new experiment, scientists measured a magnetic property of the electron more carefully than ever before, making the most precise measurement of any property of an elementary particle, ever. Known as the electron magnetic moment, it’s a measure of the strength of the magnetic field carried by the particle.

That property is predicted by the standard model of particle physics, the theory that describes particles and forces on a subatomic level. In fact, it’s the most precise prediction made by that theory.