Toggle light / dark theme

Researchers in Germany and the U.S. have shown for the first time that terahertz (THz) light pulses can stabilize ferromagnetism in a crystal at temperatures more than three times its usual transition temperature. As the team reports in Nature, using pulses just hundreds of femtoseconds long (a millionth of a billionth of a second), a ferromagnetic state was induced at high temperature in the rare-earth titanate YTiO3 which persisted for many nanoseconds after the light exposure. Below the equilibrium transition temperature, the laser pulses still strengthened the existing magnetic state, increasing the magnetization up to its theoretical limit.

Using light to control magnetism in solids is a promising platform for future technologies. Today’s computers mainly rely on the flow of electrical charge to process information. Moreover, digital memory storage devices make use of magnetic bits that must be switched external magnetic fields. Both of these aspects limit the speed and energy efficiency of current computing systems. Using light instead to optically switch memory and computing devices could revolutionize processing speeds and efficiency.

YTiO3 is a transition metal oxide that only becomes ferromagnetic, with properties resembling those of a fridge magnet, below 27 K or −246°C. At these low temperatures, the spins of the electrons on the Ti atoms align in a particular direction. It is this collective ordering of the spins which gives the material as a whole a macroscopic magnetization and turns it ferromagnetic. In contrast, at temperatures above 27 K, the individual spins fluctuate randomly so that no ferromagnetism develops.

Servers running software sold by Salesforce are leaking sensitive data managed by government agencies, banks, and other organizations, according to a post published Friday by KrebsOnSecurity.

At least five separate sites run by the state of Vermont permitted access to sensitive data to anyone, Brian Krebs reported. The state’s Pandemic Unemployment Assistance program was among those affected. It exposed applicants’ full names, Social Security numbers, addresses, phone numbers, email addresses, and bank account numbers. Like the other organizations providing public access to private data, Vermont used Salesforce Community, a cloud-based software product designed to make it easy for organizations to quickly create websites.

Another affected Salesforce customer was Columbus, Ohio-based Huntington Bank. It recently acquired TCF Bank, which used Salesforce Community to process commercial loans. Data fields exposed included names, addresses, Social Security numbers, titles, federal IDs, IP addresses, average monthly payrolls, and loan amounts.

An artificial intelligence system enables robots to conduct autonomous scientific experiments—as many as 10,000 per day—potentially driving a drastic leap forward in the pace of discovery in areas from medicine to agriculture to environmental science.

Reported today in Nature Microbiology, the research was led by a professor now at the University of Michigan.

That , dubbed BacterAI, mapped the metabolism of two associated with —with no baseline information to start with. Bacteria consume some combination of the 20 amino acids needed to support life, but each species requires specific nutrients to grow. The U-M team wanted to know what amino acids are needed by the beneficial microbes in our mouths so they can promote their growth.

Emerging Metaverse applications demand accessible, accurate, and easy-to-use tools for 3D digital human creations in order to depict different cultures and societies as if in the physical world. Recent large-scale vision-language advances pave the way to for novices to conveniently customize 3D content. However, the generated CG-friendly assets still cannot represent the desired facial traits for human characteristics. In this paper, we present DreamFace, a progressive scheme to generate personalized 3D faces under text guidance. It enables layman users to naturally customize 3D facial assets that are compatible with CG pipelines, with desired shapes, textures, and fine-grained animation capabilities. From a text input to describe the facial traits, we first introduce a coarse-to-fine scheme to generate the neutral facial geometry with a unified topology. We employ a selection strategy in the CLIP embedding space to generate coarse geometry, and subsequently optimize both the details displacements and normals using Score Distillation Sampling from generic Latent Diffusion Model. Then, for neutral appearance generation, we introduce a dual-path mechanism, which combines the generic LDM with a novel texture LDM to ensure both the diversity and textural specification in the UV space. We also employ a two-stage optimization to perform SDS in both the latent and image spaces to significantly provides compact priors for fine-grained synthesis. Our generated neutral assets naturally support blendshapes-based facial animations. We further improve the animation ability with personalized deformation characteristics by learning the universal expression prior using the cross-identity hypernetwork, and a neural facial tracker for video input. Extensive qualitative and quantitative experiments validate the effectiveness and generalizability of DreamFace. Notably, DreamFace can generate of realistic 3D facial assets with physically-based rendering quality and rich animation ability from video footage, even for fashion icons or exotic characters in cartoons and fiction movies.

From René Descartes to the Wachowskis (directors of the Matrix trilogy, amongst others) to Elon Musk, many have envisioned that our existence is just part of the scheme of a superior intelligence and our lives are merely part of a simulated reality. There’s obviously no evidence for it and there are actually many arguments against it, and now researchers think they have found a physical property that occurs in metals that cannot be simulated, telling us once and for all that our lives, good or bad, are actually real.