Toggle light / dark theme

This week, during The Global Stem Cell Event in Boston, Mass., scientists revealed that they have created a synthetic human embryo without an egg or sperm.

It isn’t clear yet whether these embryos could eventually mature into living, breathing, humans. However, their mere existence is “groundbreaking,” according to The Guardian, the first outlet to report on the discovery.

Details of this research has not yet been published.

It is essential to carefully consider the advantages and disadvantages of AI as its integration into various aspects of society continues to evolve. Proactive measures are necessary to maximise the benefits of AI while mitigating potential drawbacks. A research study conducted by the American Psychological Association reveals that employees who frequently engage with artificial intelligence (AI) systems are more likely to experience loneliness, leading to insomnia and increased after-work drinking, reported scitechdaily. The study was carried out across various countries, including the United States, Taiwan, Indonesia, and Malaysia, with consistent findings across different cultures.

The dangers of isolation

Lead researcher Pok Man Tang, PhD, who previously worked in an investment bank utilising AI systems, was inspired to investigate this timely issue.

Researchers have used a machine learning model to identify three compounds that could combat aging. They say their approach could be an effective way of identifying new drugs, especially for complex diseases.

Cell division is necessary for our body to grow and for tissues to renew themselves. Cellular senescence describes the phenomenon where cells permanently stop dividing but remain in the body, causing tissue damage and aging across body organs and systems.

Ordinarily, senescent cells are cleared from the body by our immune system. But, as we age, our immune system is less effective at clearing out these cells and their number increases. An increase in senescent cells has been associated with diseases such as cancer, Alzheimer’s disease and the hallmarks of aging such as worsening eyesight and reduced mobility. Given the potentially deleterious effects on the body, there has been a push to develop effective senolytics, compounds that clear out senescent cells.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
Telomere Length, Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.

A human cell harbors roughly 2 meters of DNA, encompassing the essential genetic information of an individual. If one were to unwind and stretch out all the DNA contained within a single person, it would span a staggering distance—enough to reach the sun and back 60 times over. In order to manage such an astounding volume of biological information, the cell compacts its DNA into tightly packed chromosomes.

“Imagine DNA as a piece of paper upon which all our is written,” says Minke A.D. Nijenhuis, co-corresponding author. “The paper is folded into a very tight structure in order to fit all of that information into a small cell nucleus. To read the information, however, parts of the paper have to be unfolded and then refolded. This spatial organization of our genetic code is a central mechanism of life. We therefore wanted to create a methodology that allows researchers to engineer and study the compaction of double-stranded DNA.”

Natural DNA is often double-stranded: one strand to encode the genes and one backup strand, intertwined in a . The double helix is stabilized by Watson-Crick interactions, which allow the two strands to recognize and pair with one another. Yet there exists another, lesser-known class of interactions between DNA. These so-called normal or reverse Hoogsteen interactions allow a third strand to join in, forming a beautiful triple helix (Figure 1).