Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

RNA technology ‘hacks’ into phage replication, offering new insights into molecular interactions

Bacteriophages, or phages for short, are viruses that infect bacteria. Using phages therapeutically could be very useful in fighting antibiotic-resistant pathogens, but the molecular interactions between phages and host bacteria are not yet sufficiently understood. Jörg Vogel’s research group at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Institute of Molecular Infection Biology (IMIB) in Würzburg has now succeeded in specifically interfering with phage reproduction using a molecular tool called antisense oligomers (ASOs).

According to the researchers, this innovative RNA technology offers new insights into the molecular world of phages and is expected to advance the development of future therapeutic applications. The study has been published in the journal Nature.

Like humans, bacteria have to cope with viruses—known as bacteriophages, or phages for short. Phages invade bacteria, hijack their cellular machinery, multiply, and cause the bacterial cell to burst. This releases new phages, which then go on to infect other bacteria. Phages are harmless to humans because they target only bacteria. They are also quite selective: Most phages are specialized in infecting specific host bacteria, including bacterial pathogens.

Permeable inspection of pharmaceuticals: Real-time tablet quality inspection system developed

Led by Assistant Professor Kou Li, a research group at Chuo University, Japan, has developed a synergetic strategy among non-destructive terahertz (THz)–infrared (IR) photo-monitoring techniques and ultrabroadband sensitive imager sheets toward demonstrating in-line real-time multi-scale quality inspections of pharmaceutical agent pills.

The paper has been published in Light: Science & Applications.

While non-destructive in-line monitoring at manufacturing sites is essential for safe distribution cycles of pharmaceuticals, efforts are still insufficient to develop analytical systems for detailed dynamic visualization of foreign substances and material composition in target pills.

In quantum sensing, what beats beating noise? Meeting noise halfway

Noise is annoying, whether you’re trying to sleep or exploit the laws of quantum physics. Although noise from environmental disturbances will always be with us, a team including scientists at the National Institute of Standards and Technology (NIST) may have found a new way of dealing with it at the microscopic scales where quantum physics reigns. Addressing this noise could make possible the best sensors ever made, with applications ranging from health care to mineral exploration.

By taking advantage of quantum phenomena known as superposition and entanglement, researchers can measure subtle changes in the environment useful for everything from geology to GPS. But to do this, they must be able to see through the caused by environmental sources such as stray magnetic fields to detect, for example, an important signal from the brain.

New findings, detailed today in Physical Review Letters, would enable interlinked groups of quantum objects such as atoms to better sense the environment in the presence of noise. A horde of unlinked quantum objects can already outperform a conventional sensor. Linking them through the process of quantum entanglement can make them perform better still. However, entangling the group can make it vulnerable to environmental noise that causes errors, making the group lose its additional sensing advantage.

Advanced X-ray technique enables first direct observation of magnon spin currents

Spintronics is an emerging field that leverages the spin, or the intrinsic angular momentum, of electrons. By harnessing this quantum-relativistic property, researchers aim to develop devices that store and transmit information faster, more efficiently, and at higher data densities, potentially making devices much smaller than what is possible today. These advances could drive next-generation memory, sensors, and even quantum technologies.

A key step toward this future is the control of “spin currents,” the flow of angular momentum through a material without an accompanying electrical charge current. However, spin currents have proven notoriously difficult to measure directly—until now.

In a new study, a research team led by scientists at the National Synchrotron Light Source II (NSLS-II)—a U.S. Department of Energy (DOE) Office of Science user facility at DOE’s Brookhaven National Laboratory—used a technique called resonant inelastic X-ray scattering (RIXS) to detect a current formed by the flow of magnons, quantized spin-wave excitations in a material’s magnetic structure.

Exotic phase of matter realized on quantum processor

Phases of matter are the basic states that matter can take—like water that can occur in a liquid or ice phase. Traditionally, these phases are defined under equilibrium conditions, where the system is stable over time. But nature allows for stranger possibilities: new phases that emerge only when a system is driven out of equilibrium. In a new study published in Nature, a research team shows that quantum computers offer an unparalleled way to explore those exotic states of matter.

Unlike conventional phases of , the so-called nonequilibrium quantum phases are defined by their dynamical and time-evolving properties—a behavior that cannot be captured by traditional equilibrium thermodynamics.

One particularly rich class of nonequilibrium states arises in Floquet systems— that are periodically driven in time. This rhythmic driving can give rise to entirely new forms of order that cannot exist under any equilibrium conditions, revealing phenomena that are fundamentally beyond the reach of conventional phases of matter.

Why tiny droplets stick or bounce: The physics of speed and size

When a droplet of liquid the size of a grain of icing sugar hits a water-repelling surface, like plastics or certain plant leaves, it can meet one of two fates: stick or bounce. Until now, scientists thought bouncing depended only on how repellent the surface was and how the droplet lost its impact energy. Speed, they assumed, didn’t matter.

Now, new research published in the Proceedings of the National Academy of Sciences, shows that speed is actually the deciding factor—and that only bounce within a “Goldilocks zone,” or just the right speed range.

“Bouncing only happens in a very narrow speed window,” said Jamie McLauchlan, first author of the study and Ph.D. student at the University of Bath.

Measuring electron pulses for future compact ultra-bright X-ray sources

In a step toward making ultra-bright X-ray sources more widely available, an international collaboration led by the University of Michigan—with experiments at the U.K.’s Central Laser Facility—has mapped key aspects of electron pulses that can go on to generate laser-like X-ray pulses.

These X-ray pulses have the potential to advance chemistry, biology, and physics by enabling researchers to measure the way molecules behave in great detail. The technique may also be useful in clinical medicine for imaging soft tissues and organs.

Because the pulses are so short, quadrillionths of a second (femtoseconds) long, they can take snapshots of chemical reactions, revealing the choreography of atoms and molecules, including larger biomolecules such as proteins. These studies are valuable for both basic research, down to quantum mechanics, and applications of chemistry such as drug discovery.

1,500-Year-Old Mystery Solved: Scientists Rewrite the Origins of the World’s First Pandemic

USF and FAU researchers identify bacterium behind 1,500-year-old pandemic mystery. For the first time, scientists have obtained direct genomic evidence of the bacterium responsible for the Plague of Justinian, the earliest known pandemic in recorded history. The outbreak, which struck the Eastern

Dark Matter “Wind” May Finally Be Detectable With New Superconducting Tech

Physicists have created a novel detector capable of probing dark matter particles at unprecedentedly low masses. About 80 percent of the universe’s mass is believed to be dark matter, yet the makeup and organization of its particles remain largely unknown, leaving physicists with fundamental ques

/* */