Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

New approach improves accuracy of quantum chemistry simulations using machine learning

A new trick for modeling molecules with quantum accuracy takes a step toward revealing the equation at the center of a popular simulation approach, which is used in fundamental chemistry and materials science studies.

The effort to understand materials and eats up roughly a third of national lab supercomputer time in the U.S. The gold standard for accuracy is the quantum many-body problem, which can tell you what’s happening at the level of individual electrons. This is the key to chemical and material behaviors as electrons are responsible for chemical reactivity and bonds, electrical properties and more. However, quantum many-body calculations are so difficult that scientists can only use them to calculate atoms and molecules with a handful of electrons at a time.

Density functional theory, or DFT, is easier—the computing resources needed for its calculations scale with the number of electrons cubed, rather than rising exponentially with each new electron. Instead of following each individual electron, this theory calculates electron densities—where the electrons are most likely to be located in space. In this way, it can be used to simulate the behavior of many hundreds of atoms.

Plasmon effects in neutron star magnetospheres could pose new limits on the detection of axions

Dark matter is an elusive type of matter that does not emit, reflect or absorb light, yet is predicted to account for most of the universe’s mass. As it cannot be detected and studied using conventional experimental techniques, the nature and composition of dark matter have not yet been uncovered.

One of the most promising candidates (i.e., hypothetical particles that dark matter could be made of) are axions. Theory suggests that axions could convert into light particles (i.e., photons) under specific conditions, which could in turn generate signals that can be picked up by sophisticated equipment.

In , such as those surrounding neutron stars with large magnetic fields (i.e., magnetars), the conversion of axions into photons has been predicted to generate weak radio signals that could be detected using powerful Earth-based or space-based radio telescopes.

New method for making graphene turns defects into improvements

Recent research has found a new way to make graphene that adds structural defects to improve the performance of the material that could have benefits across a range of applications—from sensors and batteries, to electronics.

Scientists from the University of Nottingham’s School of Chemistry, University of Warwick and Diamond Light Source developed a single-step process to grow -like films using a molecule, Azupyrene, whose shape mimics that of the desired defect. The research has been published today in Chemical Science.

David Duncan, Associate Professor at the University of Nottingham and one of the study’s lead authors, explains, “Our study explores a new way to make graphene, this super-thin, super-strong material is made of carbon atoms, and while perfect graphene is remarkable, it is sometimes too perfect. It interacts weakly with other materials and lacks crucial electronic properties required in the semiconductor industry.”

18-member Nanoring Pushes The Boundaries of Global Aromaticity

Pushing the limits of size constraints in chemistry, an 8-nanometer 18-porphyrin nanoring (c-P18) becomes the largest known cyclic molecule to exhibit detectable global aromaticity. This phenomenon, where π-electrons are delocalized not just over individual aromatic units but around the entire macrocyclic ring, is mostly seen in smaller aromatic molecules but rarely found in macrocyclic entities.

Researchers from the University of Oxford and the University of Nottingham confirm that the c-P18 nanoring carries a circuit of 242 π-electrons, setting the current upper size limit for global aromaticity in butadiyne-linked systems. Using highly sensitive Fluorine-19 NMR spectroscopy, they tracked ring currents while charging the nanoring via oxidation.

The experiments uncovered faint magnetic shoulder signals—the telltale signature of electrons flowing globally between aromatic and antiaromatic states. This pushes beyond the benchmark set by the 12-member porphyrin nanoring, which had previously been the largest in this class, to show clear global aromaticity.

A scalable and accurate tool to characterize entanglement in quantum processors

Quantum computers, computing systems that process information leveraging quantum mechanical effects, could soon outperform classical computers in various optimization and computational tasks.

To enable their reliable operation in real-world settings, however, engineers and physicists should be able to precisely control and understand the quantum states underpinning the functioning of .

The research team led by Dapeng Yu at Shenzhen International Quantum Academy, Tongji University and other institutes in China recently introduced a new mathematical tool that could be used to characterize quantum states in quantum processors with greater accuracy.

World’s smallest marine dolphins can perform underwater barrel rolls

Scientists observing from boats knew little of the underwater behavior of the world’s smallest marine dolphin, the Hector’s dolphin.

Now, a paper has revealed a hidden world—including an array of acrobatics. The research is published in the journal Conservation Letters.

Barrel rolls, dives up to 120m deep, and upside-down feeding near the sea floor were behaviors discovered through tracking devices.

Compact phononic circuits guide sound at gigahertz frequencies for chip-scale devices

Phononic circuits are emerging devices that can manipulate sound waves (i.e., phonons) in ways that resemble how electronic circuits control the flow of electrons. Instead of relying on wires, transistors and other common electronic components, these circuits are based on waveguides, topological edge structures and other components that can guide phonons.

Phononic circuits are opening new possibilities for the development of high-speed communication systems, and various other technologies.

To be compatible with existing infrastructure, including current microwave communication systems, and to be used to develop highly performing quantum technologies, these circuits should ideally operate at gigahertz (GHz) frequencies. This essentially means that the sound waves they generate and manipulate oscillate billions of times per second.

Clever device drastically reduces the vibration from rotating parts

An EPFL Ph.D. student in mechanical engineering has developed a device that significantly dampens the flow-induced vibration caused by rotating parts, such as those in boat propellers, turbines and hydraulic pumps. His device can be produced with a 3D printer and has recently been patented.

It’s a classic case of beginner’s luck. Thomas Berger had just started his Ph.D. in at EPFL’s School of Engineering when he made his now-patented discovery, which is published in Scientific Reports.

His thesis built on work he had started as a master’s student, but with the help of a 3D printer. This led to the promising technology that’s now attracting interest from investors.

Direct grid connection technology provides fast charging solution for electric vehicles

With the surging popularity for electric vehicles (EVs), rapid charging is a challenge as it requires power delivery exceeding 1 MW (which can power about 1,000 homes). Conventional charging stations rely on bulky line frequency transformers (LFTs), which are expensive due to extensive use of copper and iron. These stations also have multiple conversion stages involving stepping up or down current, or converting AC to DC and vice versa. This can greatly increase cost and reduce efficiency.

To solve this problem, researchers at the Department of Electrical Engineering (EE), Indian Institute of Science (IISc), in collaboration with Delta Electronics India, have developed a novel cascaded H-bridge (CHB)-based multiport DC converter that directly connects to the medium-voltage AC (MVAC) . This eliminates the need for large and expensive LFTs.

Published in IEEE Transactions on Industrial Electronics, the study shows that such converters can help address the growing power demands of fast-charging EV stations, crucial for scaling up India’s EV infrastructure.

Researchers are first to image directional atomic vibrations

Researchers at the University of California, Irvine, together with international collaborators, have developed a new electron microscopy method that has enabled the first-ever imaging of vibrations, or phonons, in specific directions at the atomic scale.

In many crystallized materials, atoms vibrate differently along varying directions, a property known as vibrational anisotropy, which strongly influences their dielectric, thermal and even superconducting behavior. Gaining a deeper understanding of this anisotropy allows engineers to tailor materials for use in electronics, semiconductors, optics and quantum computing.

In a paper published in Nature, the UC Irvine-led team details the workings of its momentum-selective electron energy-loss spectroscopy technique and its power to unveil the fundamental lattice dynamics of functional materials.

/* */