Toggle light / dark theme

Summary: Researchers successfully mapped the neural activity of the C. elegans worm, correlating it to its behaviors such as movement and feeding.

Using novel technologies and methodologies, they developed a comprehensive atlas that showcases how most of the worm’s neurons encode its various actions.

This study provides an intricate look into how an animal’s nervous system controls behavior. The team’s findings, data, and models are available on the “WormWideWeb.”

Researchers from The University of Queensland applied an algorithm from a video game to study the dynamics of molecules in living brain cells.

Dr. Tristan Wallis and Professor Frederic Meunier from UQ’s Queensland Brain Institute came up with the idea while in lockdown during the COVID-19.

First identified in 2019 in Wuhan, China, COVID-19, or Coronavirus disease 2019, (which was originally called “2019 novel coronavirus” or 2019-nCoV) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has spread globally, resulting in the 2019–22 coronavirus pandemic.

Researchers at the University of Ottawa, in collaboration with Danilo Zia and Fabio Sciarrino from the Sapienza University of Rome, recently demonstrated a novel technique that allows the visualization of the wave function of two entangled photons, the elementary particles that constitute light, in real-time.

Using the analogy of a pair of shoes, the concept of entanglement can be likened to selecting a shoe at random. The moment you identify one shoe, the nature of the other (whether it is the left or right shoe) is instantly discerned, regardless of its location in the universe. However, the intriguing factor is the inherent uncertainty associated with the identification process until the exact moment of observation.

The , a central tenet in , provides a comprehensive understanding of a particle’s . For instance, in the shoe example, the “wave function” of the shoe could carry information such as left or right, the size, the color, and so on.

Texas A&M University’s board of regents voted to approve the construction of a new institute in Houston that hopes to contribute to maintaining the state’s leadership within the aerospace sector.

This week, the Texas A&M Space Institute got the greenlight for its $200 million plan. The announcement follows a $350 million investment from the Texas Legislature. The institute is planned to be constructed next to NASA’s Johnson Space Center in Houston.

“The Texas A&M Space Institute will make sure the state expands its role as a leader in the new space economy,” John Sharp, chancellor of the Texas A&M System, says in a news release. “No university is better equipped for aeronautics and space projects than Texas A&M.”

WASHINGTON — The Space Development Agency announced Aug. 21 it awarded contracts worth $1.5 billion to Northrop Grumman and Lockheed Martin to build and operate 72 satellites.

The Space Development Agency (SDA), an organization under the U.S. Space Force, is building a mesh network of military satellites in low Earth orbit.

The 72 satellites will make up a portion of SDA’s network known as Tranche 2 Transport Layer. SDA is building a large constellation called the proliferated warfighter space architecture that includes a Transport Layer of interconnected communications satellites and a Tracking Layer of missile-detection and warning sensor satellites.

Researchers have developed “smart rust,” iron oxide nanoparticles that clean water by attracting pollutants such as oil, nano-and microplastics, glyphosate, and even estrogen hormones.

Pouring flecks of rust into water typically makes it dirtier. However, a groundbreaking development by researchers has led to the creation of “smart rust,” a type of iron oxide nanoparticle that can purify water. This smart rust has the unique ability to attract various pollutants, such as oil, nano-and microplastics, and the herbicide glyphosate, depending on the particles’ coating. What makes it even more efficient is its magnetic nature, which allows easy removal from water using a magnet, taking the pollutants along with it. Recently, the team has optimized these particles to capture estrogen hormones, which can be detrimental to aquatic life.

Presentation and Significance.

We all know having a balanced diet is important to stay healthy. New research from Waseda University has started to unpick the optimum proportion of macronutrients for a diet that supports metabolic health as we age – starting with protein. The study is published in GeroScience.

Linking diet to “healthspan”

Over our lifespans, our nutrition needs change. By optimizing our diets according to what our bodies need (in relation to our age), we can maintain our metabolic health and thereby increase our “healthspan”, with healthspan referring to the length of time in our lives that we spend in good health.