Toggle light / dark theme

Einstein showed that space and time are essentially the same thing, a single entity called ‘spacetime’. But space and time seem so radically different. How could space and time be literally the same thing? How would spacetime change our understanding of space and time? What are the implications?

Free access to Closer to Truth’s library of 5,000 videos: http://bit.ly/376lkKN

Watch more interviews on time and space time: https://bit.ly/3YehY4w.

Support the show with Closer To Truth merchandise: https://bit.ly/3P2ogje.

Every so often, along comes a story which, like [Fox Mulder] with his unexplained phenomena, we want to believe. EM drives and cold fusion for example would be the coolest of the cool if they worked, but sadly they crumbled when subjected to scientific inquiry outside the labs of their originators. The jury’s still out on the latest example, a claimed room-temperature superconductor, but it’s starting to seem that it might instead be a diamagnetic semiconductor.

We covered some of the story surrounding the announcement of LK-99 and subsequent reports of it levitating under magnetic fields, but today’s installment comes courtesy of a team from Beihang University in Beijing. They’ve published a paper in which they characterize their sample of LK-99, and sadly according to them it’s no superconductor.

Instead it’s a diamagnetic semiconductor, something that in itself probably bears some explanation. We’re guessing most readers will be familiar with semiconductors, but diamagnetic substances possess the property of having an external magnetic field induce an internal magnetic field in the opposite direction. This means that they will levitate in a magnetic field, but not due to the Meissner effect, the property of superconductors which causes magnetic field to flow round their outside. The Beijing team have shown by measuring the resistance of the sample that it’s not a superconductor.

Still a big maybe but it gives them other ideas/possibilities. Hopefully they succeed soon! My mother has glaucoma. It’ll probably be decades before this cure happens though. Unless it can be accelerated which is predicted by Ray Kurzweil in his book The Singularity is Near. I think other futurists have said similar things though I’m not familiar with all of them, I saw a talk by one for NASA.


In efforts to tackle the leading cause of blindness in developed countries, researchers have recruited nanotechnology to help regrow retinal cells.

Macular degeneration is a form of central vision loss, which has massive social, mobility, and mental consequences. It impacts hundreds of millions of people globally and is increasing in prevalence.

The degeneration is the consequence of damaged retinal pigment cells. Our bodies are unable to grow and replace these cells once they start dying, so scientists have been exploring alternative methods to replace them and the membrane within which they sit.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.

The crushing demand for AI has also revealed the limits of the global supply chain for powerful chips used to develop and field AI models.

The continuing chip crunch has affected businesses large and small, including some of the AI industry’s leading platforms and may not meaningfully improve for at least a year or more, according to industry analysts.

The latest sign of a potentially extended shortage in AI chips came in Microsoft’s annual report recently. The report identifies, for the first time, the availability of graphics processing units (GPUs) as a possible risk factor for investors.

A former Twitter executive said she slept on the office floor because Elon Musk gave her a “nearly impossible deadline.”

Esther Crawford, the former director of product management at the social-media giant, which rebranded as X this week, retweeted a photo of her wrapped up in a sleeping bag on the floor of one of Twitter’s conference rooms in November. “When your team is pushing round the clock to make deadlines sometimes you #SleepWhereYouWork,” Crawford wrote in the caption.

The photo of her lying on the floor and wearing an eye mask went viral.

Now fast forward 10 more years. That same man and his peers will have counted 70 circles round the sun. But John will remain biologically 60. At the same time, someone who is 30 years old in the year 2033 could theoretically begin the therapy at age 30, and stick at a biological age of 30 for the next 30 years, when their calendar would call them 60. That’s what gene therapies for longevity could do.


Longevity startups are riding high as a wave of gene therapies advance through clinical trials. Can they actually turn back the clock?

So far, gene therapy has been approved by the U.S. Food and Drug Administration (FDA) for only a couple of applications like rare inherited diseases and blood cancer. That said, more than 2,000 clinical trials are taking place in 2023, with 200 of them having already reached phase 3 clinical trials. A slew of upcoming gene therapies could be approved—possibly in the months to come—in the United States and Europe, targeting everything from sickle cell disease and hemophilia to metastatic skin cancer. In this future, gene therapy will be approved for everything we can imagine—and many things we can’t.

On Wednesday, Meta announced it is open-sourcing AudioCraft, a suite of generative AI tools for creating music and audio from text prompts. With the tools, content creators can input simple text descriptions to generate complex audio landscapes, compose melodies, or even simulate entire virtual orchestras.

AudioCraft consists of three core components: AudioGen, a tool for generating various audio effects and soundscapes; MusicGen, which can create musical compositions and melodies from descriptions; and EnCodec, a neural network-based audio compression codec.