Toggle light / dark theme

Scientists at Stanford University have found a way to induce cell death in cancer cells with a method that could be effective in around 50% of cancers. In a paper, “Rewiring cancer drivers to activate apoptosis,” published in Nature, the team describes a new class of molecules called transcriptional/epigenetic CIPs (TCIPs) that can activate apoptosis with the help of cancer growth gene expressions within the cancer cells.

The researchers designed small molecules that bind specific transcriptional suppressors to transcription activators. The most potent molecule created, TCIP1, works by linking that bind BCL6 to those that bind transcriptional activators BRD4.

One of the components that makes cancer cells cancerous is that they ignore signals from surrounding healthy tissues to stop growing and to initiate apoptosis or cell death. The apoptosis pathways still exist but are actively blocked in certain types of cancer where the transcription factor B cell lymphoma 6 (BCL6) binds to the promoters of apoptosis and suppresses their expression through .

Organizations are building resilient supply chains with a “phygital” approach, a blend of digital and physical tools. In recent years, the global supply chain has been disrupted due to the covid-19 pandemic, geopolitical volatility, overwhelmed legacy systems, and labor shortages. The National Association of Manufacturers (NAM), an industrial advocacy group, warns the disruption isn’t over— NAM’s spring 2023 survey found 90% of respondents saw significant (52.5%) or partial (39%) supply chain disruption during the past two years. Just 0.5% of respondents reported no disruption at all. Digitization presents an opportunity to overcome supply chain disruption by making data flow more efficiently, using technology and data standards to break barriers between disparate systems.

“Phygital merges two worlds together, where standards provide an interoperable system of defined data structures,” says Melanie Nuce-Hilton, senior vice president of innovation and partnerships at GS1 US, a member of GS1, a global not-for-profit supply chain standards organization. “The approach is intended to deliver multiple benefits—improved supply chain visibility for traceability and inventory management, better customer experiences across online and offline interactions, and the potential for better circularity and waste reduction by maintaining linkages between products and their data throughout their lifecycle,” she says.

Presented by VAST Data

With access to just a sliver of the 2.5 quintillion bytes of data created every day, AI produces what often seem like miracles that human intellect can’t match — identifying cancer on a medical scan, a viable embryo for IVF, new ways of tackling climate change and the opioid crisis and on and on. However, that’s not true intelligence; rather, these AI systems are just designed to link data points and report conclusions, to power increasingly disruptive automation across industries.

While generative AI is trending and GPT models have taken the world by storm with their astonishing capabilities to respond to human prompts, do they truly acquire the ability to perform reasoning tasks that humans find easy to execute? It’s important to understand that the current AI the world is working with has little understanding of the world it exists in, and is unable to build a mental model that goes beyond regurgitating information that is already known.

Hints from the bowhead whale genome published nearly a decade ago predicted that the mammals may use this alternate strategy (SN: 1/6/15). “But you need actual experiments to actually validate those predictions,” Tollis says.

In the lab, study coauthor Vera Gorbunova at the University of Rochester in New York and her colleagues ran an assortment of experiments on cells harvested from bowhead whale tissue, as well as on cells from humans, cows and mice.

The whale cells were both efficient and accurate at repairing double-strand breaks in DNA, damage that severs both strands of the DNA double helix. Whale repair restored broken DNA to like-new condition more often than cells from other mammals, the team found. In those animals, mends to the genome tended to be sloppier, like a poorly patched pair of jeans. The team also identified two proteins in bowhead whale cells, CIRBP and RPA2, that are part of the DNA repair crew.

The observation of self-heating in magnetically confined plasmas represents a milestone on the road to fusion reactors based on such plasmas.

A fusion reactor would generate electricity using the energy released by nuclear-fusion reactions occurring in a plasma. A key step in the race toward realizing the dream of such a reactor is the creation of a burning plasma—one in which the fusion reactions themselves supply most of the heating needed to keep the plasma at fusion-relevant temperatures. This step has recently been demonstrated for inertially confined plasmas [1, 2] (see Research News: Ignition First in a Fusion Reaction) but has so far remained elusive for magnetically confined ones. This goal could now be within reach thanks to direct evidence for fusion-induced heating of electrons in magnetically confined plasmas obtained by Vasily Kiptily and colleagues at the UK-based Joint European Torus (JET) facility [3].

The fusion of two heavy hydrogen isotopes—deuterium (D) and tritium (T)—presents the most promising path to a fusion reactor, both because of the relative ease in getting these isotopes to fuse and because of the large amount of energy released in each reaction. When D and T fuse, an alpha particle (a helium-4 nucleus) and a neutron are generated, carrying the released energy in the form of kinetic energy. The goal of achieving energy production from controlled fusion on Earth relies on the created alpha particles remaining in the plasma and heating the fusion fuel to keep the reactions going, while the kinetic energy of neutrons escaping the plasma is converted to electrical energy.