Toggle light / dark theme

Since the start of the quantum race, Microsoft has placed its bets on the elusive but potentially game-changing topological qubit. Now the company claims its Hail Mary has paid off, saying it could build a working processor in less than a decade.

Today’s leading quantum computing companies have predominantly focused on qubits—the quantum equivalent of bits—made out of superconducting electronics, trapped ions, or photons. These devices have achieved impressive milestones in recent years, but are hampered by errors that mean a quantum computer able to outperform classical ones still appears some way off.

Microsoft, on the other hand, has long championed topological quantum computing. Rather than encoding information in the states of individual particles, this approach encodes information in the overarching structure of the system. In theory, that should make the devices considerably more tolerant of background noise from the environment and therefore more or less error-proof.

The teams pitted IBM’s 127-qubit Eagle chip against supercomputers at Lawrence Berkeley National Lab and Purdue University for increasingly complex tasks. With easier calculations, Eagle matched the supercomputers’ results every time—suggesting that even with noise, the quantum computer could generate accurate responses. But where it shone was in its ability to tolerate scale, returning results that are—in theory—far more accurate than what’s possible today with state-of-the-art silicon computer chips.

At the heart is a post-processing technique that decreases noise. Similar to looking at a large painting, the method ignores each brush stroke. Rather, it focuses on small portions of the painting and captures the general “gist” of the artwork.

The study, published in Nature, isn’t chasing quantum advantage, the theory that quantum computers can solve problems faster than conventional computers. Rather, it shows that today’s quantum computers, even when imperfect, may become part of scientific research—and perhaps our lives—sooner than expected. In other words, we’ve now entered the realm of quantum utility.

The new study, published in Nature, showed that the unassuming protein is far from a one-trick pony. Rather than a simple protein cog in the body’s wound-healing machine, PF4 also acts as an ambassador between the brain and the immune system. When young, the protein “gatekeeper” tunes down inflammation and helps maintain the brain’s cognitive functions.

Unfortunately, PF4 levels in the body nosedive with age. The drop incites a spark of inflammation in the brain’s “memory center”—the hippocampus—and hampers the neurons’ ability to communicate. Neural networks misfire. As does memory: an aged animal struggles to remember new places or learn new tasks.

It’s not all bad news. In one test, a jab of PF4 partially reset the body’s immune system, lowering levels of proteins that promote inflammation, and boosted cognition in elderly mice.

The team used acupuncture needles to deliver the trigger for 10 seconds a day, and the blood sugar levels in the mice returned to normal within a month. The rodents even regained the ability to manage blood sugar levels after a large meal without the need for external insulin, a normally difficult feat.

Called “electrogenetics,” these interfaces are still in their infancy. But the team is especially excited for their potential in wearables to directly guide therapeutics for metabolic and potentially other disorders. Because the setup requires very little power, three AA batteries could trigger a daily insulin shot for more than five years, they said.

The study is the latest to connect the body’s analogue controls—gene expression—with digital and programmable software such as smartphone apps. The system is “a leap forward, representing the missing link that will enable wearables to control genes in the not-so-distant future,” said the team.

SpaceX’s Super Heavy Booster 9 prototype has rolled out to the launch site in preparation for a repeat of its pre-launch static fire test. This follows roughly two weeks after its first static fire attempt that ended prematurely at only half the expected duration. Work continues in parallel at Starbase to prepare Ship 25 for flight, which could occur in the next week or two, pending regulatory approval.

Future vehicles for Starship flights deep into next year are also in production. SpaceX is also in the midst of a major upgrade to its Starship production factory that will change the future look of the South Texas facility.

Our lifespans might feel like a long time by human standards, but to the Earth it’s the blink of an eye. Even the entirety of human history represents a tiny slither of the vast chronology for our planet. We often think about geological time when looking back into the past, but today we look ahead. What might happen on our planet in the next billion years?

Written and presented by Prof David Kipping, edited by Jorge Casas.

→ Support our research program: https://www.coolworldslab.com/support.
→ Get Stash here! https://teespring.com/stores/cool-worlds-store.

THANK-YOU to our supporters D. Smith, M. Sloan, C. Bottaccini, D. Daughaday, A. Jones, S. Brownlee, N. Kildal, Z. Star, E. West, T. Zajonc, C. Wolfred, L. Skov, G. Benson, A. De Vaal, M. Elliott, B. Daniluk, M. Forbes, S. Vystoropskyi, S. Lee, Z. Danielson, C. Fitzgerald, C. Souter, M. Gillette, T. Jeffcoat, J. Rockett, D. Murphree, S. Hannum, T. Donkin, K. Myers, A. Schoen, K. Dabrowski, J. Black, R. Ramezankhani, J. Armstrong, K. Weber, S. Marks, L. Robinson, S. Roulier, B. Smith, G. Canterbury, J. Cassese, J. Kruger, S. Way, P. Finch, S. Applegate, L. Watson, E. Zahnle, N. Gebben, J. Bergman, E. Dessoi, J. Alexander, C. Macdonald, M. Hedlund, P. Kaup, C. Hays, W. Evans, D. Bansal, J. Curtin, J. Sturm, RAND Corp., M. Donovan, N. Corwin, M. Mangione, K. Howard, L. Deacon, G. Metts, G. Genova, R. Provost, B. Sigurjonsson, G. Fullwood, B. Walford, J. Boyd, N. De Haan, J. Gillmer, R. Williams, E. Garland, A. Leishman, A. Phan Le, R. Lovely, M. Spoto, A. Steele, M. Varenka, K. Yarbrough & F. Demopoulos.

A film that has spawned a thousand imitations but never been bettered — Mamoru Oshii’s legendary anime film GHOST IN THE SHELL returns in a stunning new edition remastered by Oshii himself. Set in a re-imagined Hong Kong at a time when cyberspace is expanding into human reality, the story follows top cyberwarrior Major Motoko Kusanagi as she hovers on the border of total immersion in the digital world.

A molecule common to Earth and usually associated with life has been detected in the depths of space by scientists.

Carbonic acid (HOCOOH), which you may know as the chemical that makes your soda fizzy, was discovered lurking near the center of our galaxy in a galactic center molecular cloud named G+0.693–0.027, a study published in The Astrophysical Journal revealed.

This marks the third time that carboxylic acids—this class of chemicals, often thought to be some of the building blocks of life —have been detected in space, after acetic acid and formic, and the first time that an interstellar molecule has been found to contain three or more oxygen atoms.

Almost all forms of modern consumer technology are powered by electrochemical energy, otherwise known as batteries. Lithium-ion batteries, for example, transform chemical reactions into direct current energy while also producing a few side effects (mainly heat). But what if there was another way to power gadgets—say, lasers?

That’s the idea behind new research from the Department of Chemical and Biological Engineering and CU-Boulder. In a new study published this month in the journal Nature Materials, the team—led by chemical and electrical engineering professor Ryan Hayward—explored ways to leverage tiny crystals and directly transform light into mechanical work. At scale, such a breakthrough could remove the need for bulky batteries and all of the thermal management that comes with it.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1