Menu

Blog

Page 283

Dec 2, 2024

New method discovered for controlling molecular patterns on liquid droplets

Posted by in categories: biotech/medical, nanotechnology

A team of researchers has uncovered a previously unknown phenomenon that could improve the way we design materials at the molecular level. By unlocking a transformation between two types of structural defects on the surface of liquid droplets, the research opens new possibilities for controlling molecular patterns with unprecedented precision. This discovery has broad applications across a range of technologies, including vaccine design, the creation of self-assembling structures, and the synthesis of complex nanoparticles.

When guest molecules are positioned on liquid droplet surfaces, they typically spread out quickly due to diffusion, making it challenging to achieve over their placement. However, the researchers discovered that droplets made from certain materials undergo a process known as “interfacial freezing,” in which the droplet’s surface forms a crystalline molecular monolayer while the bulk of the droplet remains liquid.

This process leads to a with a hexagonal surface structure, where the curvature of the surface dictates the formation of structural defects. The defects thus formed are critical to controlling the behavior of guest molecules.

Dec 2, 2024

‘Spooky action’ at a very short distance: Scientists map out quantum entanglement in protons

Posted by in categories: particle physics, quantum physics

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and collaborators have a new way to use data from high-energy particle smashups to peer inside protons. Their approach uses quantum information science to map out how particle tracks streaming from electron-proton collisions are influenced by quantum entanglement inside the proton.

The results reveal that and gluons, the fundamental building blocks that make up a proton’s structure, are subject to so-called . This quirky phenomenon, famously described by Albert Einstein as “spooky action at a distance,” holds that particles can know one another’s state—for example, their spin direction—even when they are separated by a great distance.

In this case, entanglement occurs over incredibly short distances—less than one quadrillionth of a meter inside individual —and the sharing of information extends over the entire group of quarks and gluons in that proton.

Dec 2, 2024

AI Could Make Quantum Computing Obsolete, Nobel Prize Winner Says

Posted by in categories: quantum physics, robotics/AI

Check out my introduction to quantum mechanics on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

Last week, DeepMind’s Demis Hassabis said that AI might be able to solve problems that quantum computers were supposedly necessary for. Indeed he said that classical systems – AI run on conventional computers – can model quantum systems. Sounds like an innocent claim but is certain to upset a lot of quantum computing researchers. Hassabis bases his argument on the surprising success of Alphafold.

Continue reading “AI Could Make Quantum Computing Obsolete, Nobel Prize Winner Says” »

Dec 2, 2024

CAR T-Cell Therapy Generates Long-Lasting Remission for Leukemia Patients

Posted by in category: biotech/medical

Immunotherapies have shaped the cancer research space over the past decade, proving effective for the treatment of some advanced cancers that previously had no therapeutic options. Chimeric antigen receptor T-cell (CAR T-cell) therapy is one immunotherapeutic approach that has recently garnered significant attention. In brief, CAR T-cell therapy involves removing a patient’s immune cells, altering them in a laboratory setting to make them better primed to detect and kill cancer cells, and delivering the modified cells back to the patient.

A recent study published in the New England Journal of Medicine shows exciting new evidence of the benefits of CAR T cell therapy. The study (NCT04404660) tested the treatment modality called obecabtagene autoleucel (obe-cel), a CAR T-cell therapy that recognizes CD19, a marker expressed on leukemia cells. Unlike other CAR T-cell modalities used to treat leukemia, obe-cel recognizes the CD19 marker with only “intermediate affinity” instead of the “high affinity” recognition of comparable therapies. Researchers suspected the lower affinity associated with obe-cel would correlate with reduced adverse effects experienced by patients receiving other CAR T-cell therapies.

The phase 1b-2 multicenter study, which included 153 adults with relapsed or refractory B-cell acute lymphoblastic leukemia (ALL), revealed promising results. Of the 127 patients who received at least one infusion of obe-cel, 77% experienced remission, with 55% achieving complete remission. The observed remission rates were significantly higher than expected, indicating notable efficacy of the treatment.

Dec 2, 2024

How Tech Is Breaking the Rules of Biology | Posthuman with Emily Chang

Posted by in categories: biological, climatology, finance, sustainability

From birth to death, tech is stretching the boundaries of biology. In this episode of Posthuman, we explore the discoveries that could transform reproduction, healthcare and how we die.

Technology that once seemed like science fiction is rapidly becoming reality, transforming the very essence of our existence. In this four-part series, Emily Chang unravels the future of being human in an age of unprecedented innovation.

Continue reading “How Tech Is Breaking the Rules of Biology | Posthuman with Emily Chang” »

Dec 2, 2024

New Breed of Computers May Evolve From Live Cells

Posted by in category: computing

The NSF is funding exploration of a new frontier with organoid research.

Dec 2, 2024

How Artificial Intelligence Could Automate Genomics Research

Posted by in category: robotics/AI

New research from UC San Diego suggests that large language models like GPT-4 could streamline the process of gene set enrichment, an approach what genes do and how they interact. Results bring science one step closer to automating one of the most widely used methods in genomics research.

Dec 2, 2024

‘Electronic’ scalp tattoos could be next big thing in brain monitoring

Posted by in category: neuroscience

During an EEG test, technicians normally use rulers and pencils to mark up a person’s head before gluing electrodes across the scalp. These electrodes are then connected via long wires to a machine that records brain activity. Alternatively, a cap with electrodes can be directly placed on the head.

However, this whole process is time-consuming and inconvenient, say the developers of the new technology. It generally takes around one to two hours to set up an EEG test, said co-developer Nanshu Lu, a professor of engineering at the University of Texas at Austin. The electrodes then need to be monitored about every two hours because the glue that attaches them to the scalp dries up, she told Live Science in an email.

Dec 2, 2024

Study reveals how stem cells respond to environmental signals, with implications for IBD and colorectal cancer

Posted by in categories: biotech/medical, chemistry, health

A new study from The Hospital for Sick Children (SickKids) and Institut Curie reveals how stem cells sense and respond to their environment, with implications for inflammatory bowel disease and colorectal cancer.

Stem cells constantly adapt to their environment to maintain organ and tissue health, informed by and physical forces. When they do not function as intended, stem cells can result in a number of health conditions including (IBD) and colorectal (bowel) cancer, where they continue to divide until a tumor forms.

Until now, how stem cells sense the physical forces around them has remained unclear, but novel findings published in Science led by Dr. Meryem Baghdadi, a former SickKids postdoctoral researcher, Dr. Tae-Hee Kim at SickKids and Dr. Danijela Vignjevic at Institut Curie, has revealed that stem cells depend on two , called PIEZO1 and PIEZO2, for their survival.

Dec 2, 2024

Newfound mechanism may explain why some cancer treatments boost risk of heart disease

Posted by in categories: biotech/medical, health, neuroscience

A cancer therapy that prompts the body’s immune defenses against viruses and bacteria to attack tumors can make patients more vulnerable to heart attack and stroke. A possible explanation for this side effect is that the treatment interferes with immune regulation in the heart’s largest blood vessels, a new study suggests.

Led by researchers at NYU Langone Health and its Perlmutter Cancer Center, the new work focused on a potent class of cancer-fighting drugs called . These medications work by blocking molecules embedded on the surface of cells—immune checkpoints—which normally serve as “brake pedals” that prevent excess immune activity, or inflammation. Some tumors are known to hijack these checkpoints to weaken the body’s defenses, so by blocking the checkpoints, the treatments enable the to kill .

However, this treatment type may also trigger damaging levels of inflammation in the heart, brain, stomach, and other organs, the researchers say. For example, past studies have shown that about 10% of those with atherosclerosis, the buildup of hardened fatty deposits (plaques) within artery walls, have a heart attack or stroke following . However, the specific mechanisms behind this issue had until now remained unclear.

Page 283 of 12,378First280281282283284285286287Last