Toggle light / dark theme

A new paper published in Frontiers in Psychology: Performance Science led by Andy Parra-Martinez at the University of Arkansas “describes the general status, trends, and evolution of research on talent identification across multiple fields globally over the last 80 years,” by drawing from the Scopus and Web of Science databases and conducting a bibliometric analysis of 2,502 documents.

Bibliometric analysis is a way of understanding the structure and citation patterns of research around a given topic, in this case, talent identification research.

Talent identification research is concentrated in business, sports, and education

Talent identification (TI) research is “concentrated in the fields of management, business, and leadership (~37%), sports and sports science (~20%), and education, psychology, and STEM (~23%). Whereas research in management and sports science has occurred independently, research in psychology and education has created a bridge for the pollination of ideas across fields.”

A new biohybrid computer combining a “brain organoid” and a traditional AI was able to perform a speech recognition task with 78% accuracy — demonstrating the potential for human biology to one day boost our computing capabilities.

The background: The human brain is the most energy efficient “computer” on Earth — while a supercomputer needs 20 mega watts of power to process more than a quintillion calculations per second, your brain can do the equivalent with just 20 watts (a megawatt is 1 million watts).

This has given researchers the idea to try boosting computers by combining them with a three-dimensional clump of lab-grown human brain cells, known as a brain organoid.