Toggle light / dark theme

With future observations and as more time passes — both from new data and from data that’s still being analyzed and prepared by this collaboration — we may obtain the most precise and accurate measurement for the expansion rate of the Universe using the cosmic distance ladder method of all-time.

This triply-imaged supernova was not named “Supernova H0pe” in vain, as it really does give us hope that the answer to today’s greatest cosmic puzzle may indeed be written on the face of the Universe. With JWST going strong, we may have already found the galaxy cluster, and the gravitationally lensed system, that will resolve what’s been puzzling astronomers for the entirety of the 21st century.

A Texas A&M University professor and a team of pharmacology researchers are spearheading advances in the use of medical cannabinoids for epilepsy and seizure disorders.

A team led by Dr. D. Samba Reddy, a Regents Professor in the Department of Neuroscience and Experimental Therapeutics at the Texas A&M University School of Medicine, has made progress in determining efficacy, safety and new applications of cannabinoid therapeutics. Reddy’s work establishes a foundation for tailored and effective epilepsy treatments, offering hope to those facing its challenges.

The team’s research on epilepsy has resulted in the publication of five key papers featured in the May 2023 issue of the journal Experimental Neurology.

“The medical cannabis research originated from the patient families and advocates in Colorado who have witnessed the positive effects of medical cannabis products,” said Reddy, who is a founding director of the Texas A&M Health Institute of Pharmacology and Neurotherapeutics.


Microglial cells are the maintenance workers of the central nervous system (CNS), protecting against pathogens and pruning damaged neurons to help the brain maintain homeostasis. Considered immune cells, microglia work to protect the brain from before it is fully formed through its lifetime, but they aren’t infallible. The cells can be primed early on to respond in certain ways, making the microglia’s clean-up efforts less efficient. As other cells age, they can complicate microglial function, making them less effective.

But the underlying mechanism of how age and how their aging directly affects the brain is poorly understood—meaning that attempts to prevent or treat brain dysfunction may not be as effective as they could be, according to a multi-institutional collaboration led by Bo Peng and Yanxia Rao, both professors at Fudan University.

The team investigated how microglial cells change as they age in both male and female mice across their lifespans, finding what the researchers called “unexpected sex differences.” They also established a model to study aged microglial cells in a non-aged brain, revealing that aged-like contribute to even in young mice. The researchers published their findings in Nature Aging.

A “rule of trees” developed by Leonardo da Vinci to describe how to draw trees has been largely adopted by science when modeling trees and how they function.

Now, scientists at Bangor University in the U.K. and the Swedish University of Agricultural Sciences (SLU) have discovered that this rule contradicts those that regulate the internal structures of .

Da Vinci’s interest in drawing led him to look at size ratios of different objects, including trees, so that he could create more accurate representations of them. To correctly represent trees, he perceived a so-called “rule of trees” which states that “all the branches of a tree at every stage of its height are equal in thickness to the trunk when put together.”

A study in the journal Cell sheds new light on the evolution of neurons, focusing on the placozoans, a millimeter-sized marine animal. Researchers at the Center for Genomic Regulation in Barcelona find evidence that specialized secretory cells found in these unique and ancient creatures may have given rise to neurons in more complex animals.

Placozoans are tiny animals, around the size of a large grain of sand, which graze on algae and microbes living on the surface of rocks and other substrates found in shallow, warm seas. The blob-like and pancake-shaped creatures are so simple that they live without any body parts or organs.

These animals, thought to have first appeared on Earth around 800 million years ago, are one of the five main lineages of animals alongside Ctenophora (), Porifera (sponges), Cnidaria (corals, sea anemones and jellyfish) and Bilateria (all other animals).