Toggle light / dark theme

How reliable is your memory? Can you remember what you were doing on this day ten years ago? Or do you struggle to remember what you ate for lunch yesterday? Regardless of how well you think you remember things, all of our brains are full of memories of events that never happened – so-called false memories. And that, according to science, isn’t necessarily something to worry about.

To explain this strange phenomenon and much more, we talked to Dr Julia Shaw, a research associate at University College London and expert on criminal psychology.

Memories are essentially networks of neurons. And autobiographical memories – memories of our lives – involve connecting different parts of the brain. These memories don’t just live in one little piece.

Current Biology. They trained Caribbean box jellyfish (Tripedalia cystophora) to learn to spot and dodge obstacles. The study challenges previous notions that advanced learning requires a centralized brain and sheds light on the evolutionary roots of learning and memory.

No bigger than a fingernail, these seemingly simple jellies have a complex visual system with 24 eyes embedded in their bell-like body. Living in mangrove swamps, the animal uses its vision to steer through murky waters and swerve around underwater tree roots to snare prey. Scientists demonstrated that the jellies could acquire the ability to avoid obstacles through associative learning, a process through which organisms form mental connections between sensory stimulations and behaviors.

Play EVE Online ➡️ https://eve.online/Ridddle_EN_megastructures.

In this video, we explore the biggest construction sites of the future — the ones that will one day provide us with real megastructures of all kinds and purposes.

From space elevators and Dyson spheres, to enormous ships and gargantuan space stations to live in. But we won’t just marvel at their scale — the real questions are: could we really build all these in the near future, what tech do we need to get the job done, and ultimately, will it work as intended, or these megastructures will turn out to be megagraves?

In our analysis we well use real engineering projects, as well as top sci-fi examples from books, movies and also from the unique world of massive multiplayer online game EVE Online.

There is a largely untapped energy source along the world’s coastlines: the difference in salinity between seawater and freshwater. A new nanodevice can harness this difference to generate power.

A team of researchers at the University of Illinois Urbana-Champaign has reported a design for a nanofluidic device capable of converting ionic flow into usable electric power in the journal Nano Energy. The team believes that their device could be used to extract power from the natural ionic flows at seawater-freshwater boundaries.

“While our design is still a concept at this stage, it is quite versatile and already shows strong potential for energy applications,” said Jean-Pierre Leburton, a U. of I. professor of electrical & computer engineering and the project lead. “It began with an academic question—’Can a nanoscale solid-state device extract energy from ionic flow?’—but our design exceeded our expectations and surprised us in many ways.”

As we age, our muscles and other tissues break down in much the same way as degenerative diseases progress. What we learn from studying degenerative diseases such as muscular dystrophy could help researchers develop new interventions to fight common age-related ailments and chronic illnesses.

With help from NIA, biotechnology company Juvena Therapeutics has begun unlocking the secrets of proteins for regenerative medicine. Juvena scientists are using a form of muscular dystrophy — myotonic dystrophy type 1 (DM-1) — as a model to sift through proteins that are produced by the body’s stem cells. These cells have the potential to become any type of cell in the body, from liver tissue to skin cells. The goal is to find proteins that encourage tissue growth and repair, ultimately designing new drugs to prevent and treat degenerative diseases like DM-1. As part of this process, Juvena hopes to learn more about how to reduce the effects of aging on muscles and other tissues, too.


A new biotech trying to establish itself can feel isolated from the larger scientific community. For example, Juvena is unable to submit findings for publication before taking care of intellectual property protections. But NIH’s peer-review process offered confidential, scientifically rigorous feedback to fill that critical gap, and the NIA Small Business Programs staff offered helpful advice.

“We can get the input, guidance, and advice that we need to really better the work,” Yousef said.

Lithium-ion batteries could get a significant boost in energy density from disordered rock salt (DRX), a versatile battery material that can be made with almost any transition metal instead of nickel and cobalt.

DRX cathodes could provide batteries with higher energy density than conventional lithium-ion battery cathodes made of nickel and cobalt, two metals that are in critically short supply.

Formed last fall, the DRX Consortium – which includes a team of approximately 50 scientists from Berkeley Lab, SLAC National Accelerator Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, Oak Ridge National Laboratory, and the University of California at Santa Barbara – was awarded $20 million from the Vehicle Technologies Office in DOE’s Office of Energy Efficiency and Renewable Energy. The funding – allocated in $5 million yearly increments through 2025 – will allow the consortium to develop DRX battery cathodes that could perform just as well if not better than the NMC (nickel-manganese-cobalt) cathodes used in today’s lithium-ion batteries.

A 58-year-old patient with terminal heart disease became the second patient in the world to receive a historic transplant of a genetically-modified pig heart on September 20. He is recovering and communicating with his loved ones. This is only the second time in the world that a genetically modified pig heart has been transplanted into a living patient. Both historic surgeries were performed by University of Maryland School of Medicine (UMSOM) faculty at the University of Maryland Medical Center (UMMC).

The first historic surgery, performed in January, 2022, was conducted on David Bennett by University of Maryland Medicine surgeons (comprising UMSOM and UMMC), who are recognized as the… More.


After world’s first successful transplant in 2022, also performed at the University of Maryland Medical Center (UMMC), this groundbreaking transplant team per.